Геометрический подход к доказательству биективности одного координатно-порогового отображения
(Стр. 26-30)

Подробнее об авторах
Литвиненко Виталий Сергеевич сотрудник ФГУП «НИИ «КВАНТ»
ФГУП «НИИ «КВАНТ» Никонов Владимир Глебович доктор технических наук, профессор, член Президиума Российской академии естественных наук.
Российская академия естественных наук
Москва, Российская Федерация
Чтобы читать текст статьи, пожалуйста, зарегистрируйтесь или войдите в систему
Аннотация:
Использование пороговых операций представляется перспективным направлением построения узлов переработки дискретной информации, ввиду потенциальной возможности реализации вычисления скалярного произведения непосредственно в среде-носителе сигнала, например, перспективных оптических вычислительных средах. В статье анализируется представление в пороговом базисе биективных отображений двоичных векторов, обладающих простотой реализацией как исходного, так и обратного преобразования с помощью, так называемых, квазиадамаровых матриц A n. В настоящее время эмпирически показана биективность таких отображений при n = 4, 6, 8, однако, не было дано соответствующих строгих доказательств. В данной работе приводится первое подобное доказательство, основанное на изучении геометрических свойств отображения, порожденного квазиадамаровой матрицей A 4. В ходе доказательства установлено, что оно носит уникальный характер и возможно в предложенном виде лишь при n = 4. Вместе с доказательством важного прикладного утверждения о биективности отображения, заданного квазиадамаровой матрицей A 4, в статье выделены интересные особенности его геометрической интерпретации.
Образец цитирования:
Литвиненко В.С., Никонов В.Г., (2015), Геометрический подход к доказательству биективности одного координатно-порогового отображения. Computational nanotechnology, 4 => 26-30.
Список литературы:
Belevitch, V. Theorem of 2n-terminal networks with application to conference telephony. 1950. vol. 26, pp. 231-244.
Goethals, J.M., and Seidel, J.J. Orthogonal matrices with zero diagonal. Canadian Journal of Mathematics. 1967. vol. 19, pp. 1001-1010.
Глухов М.М., Елизаров В.П., Нечаев А.А. Алгебра. 2003. Т. 1, 2.
Никонов В.Г., Саранцев А.В. Методы компактной реализации биективных отображений, заданных регулярными системами однотипных булевых функций // Вестник Российского университета дружбы народов. Серия: Прикладная и компьютерная математика. 2003. Т. 2. № 1. С. 94-105.
Никонов В.Г., Саранцев А.В. Построение и классификация регулярных систем однотипных функций // Информационные технологии в науке, образовании, телекоммуникации и бизнесе: материалы XXXI Международной конференции. Т. 5 из Прил. 1. - М.:.Академия естествознания, 2004. С. 173-174.
Никонов В.Г., Сидоров Е.С. О способе построения взаимно однозначных отображений при помощи квазиадамаровых матриц // Вестник Московского государственного университета леса - Лесной вестник. 2009. №2 (65).
Ключевые слова:
биективные отображения, пороговые функции, многомерные конусы, квазиадамаровы матрицы.


Статьи по теме

1. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ЧИСЛЕННЫЕ МЕТОДЫ И КОМПЛЕКСЫ ПРОГРАММ Страницы: 6-13 Выпуск №6518
О БИЕКТИВНОСТИ ПРЕОБРАЗОВАНИЙ, ЗАДАВАЕМЫХ КВАЗИАДАМАРОВЫМИ МАТРИЦАМИ
биективные отображения пороговые функции квазиадамаровы матрицы
Подробнее
Многомасштабное моделирование для управления и обработки информации Страницы: 32-38 DOI: 10.33693/2313-223X-2022-9-1-32-38 Выпуск №20643
О некоторых свойствах квазиадамаровых матриц, задающих биективные преобразования
биективные отображения пороговые функции квазиадамаровы матрицы bijections threshold functions
Подробнее
Методы и системы защиты информации, информационная безопасность Страницы: 93-105 DOI: 10.33693/2313-223X-2022-9-1-93-105 Выпуск №20643
О существовании, способе построения и некоторых свойствах (n - 2)-структурированных матриц, порождающих биективные преобразования
биективные отображения пороговые функции (n - 2)-структурированные матрицы bijections threshold functions
Подробнее
1. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ЧИСЛЕННЫЕ МЕТОДЫ И КОМПЛЕКСЫ ПРОГРАММ Страницы: 14-23 Выпуск №6518
БИЕКТИВНО КООРДИНАТНО-ЗАПРЕТНЫЕ k-ЗНАЧНЫЕ ФУНКЦИИ В ЗАДАЧАХ СИНТЕЗА ПОДСТАНОВОЧНЫХ ПРЕОБРАЗОВАНИЙ
биективные отображения k-значные функции с запретными знаками подфункций
Подробнее
2. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ЧИСЛЕННЫЕ МЕТОДЫ И КОМПЛЕКСЫ ПРОГРАММ Страницы: 31-36 Выпуск №5869
Конструктивный метод синтеза сбалансированных k-значных алгебраических пороговых функций
многозначная логика пороговые функции алгебраические пороговые функции сбалансированные функции
Подробнее
3. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ Страницы: 53-59 Выпуск №3742
О ФУНКЦИОНАЛЬНОЙ РАЗДЕЛИМОСТИ БУЛЕВЫХ ФУНКЦИЙ, ЗАДАВАЕМЫХ КВАДРАТИЧНЫМИ НЕРАВЕНСТВАМИ
булевые функции пороговые функции декомпозиция квадратичные неравенства
Подробнее