Элементы искусственного интеллекта в решении задач анализа текстов
(Стр. 35-44)

Подробнее об авторах
Катермина Татьяна Сергеевна кандидат технических наук; доцент кафедры информатики и методики преподавания информатики
Нижневартовский государственный университет
Ханты-Мансийский автономный округ - Югра, Тюменская область, г. Нижневартовск, Российская Федерация Тагиров Кадир Межвединович магистр; преподаватель
Нижневартовский государственный университет»
Нижневартовск, Российская Федерация Тагиров Тагир Межвединович магистр; преподаватель
Нижневартовский государственный университет»
Нижневартовск, Российская Федерация
Чтобы читать текст статьи, пожалуйста, зарегистрируйтесь или войдите в систему
Аннотация:
В связи с постоянно растущим объемом текстовой информации в интернете и потребностью в ней ориентироваться, становиться актуальным автоматизация процесса анализа текста. Анализ предметной области показал большой интерес к определению эмоциональной окраски текстовой информации и применению трудов по этой проблеме в различных областях экономики. В работе рассматривается разработка модели нейронной сети для анализа тональности сообщений в социальных сетях сети Интернет. Для решения поставленной цели используются модели рекуррентных нейронных сетей с модулями долгой краткосрочной памятью (LSTM). Разработана информационная система, которая определяет тональность комментариев к постам в сообществах социальной сети «ВКонтакте». В результате обучения искусственной нейронной сети, модель показала хорошую точность определения тональности текста. Информационная система внедрена в отдел маркетинга Бюджетного учреждения Нижневартовского строительного колледжа.
Образец цитирования:
Катермина Т.С., Тагиров К.М., Тагиров Т.М., (2022), ЭЛЕМЕНТЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В РЕШЕНИИ ЗАДАЧ АНАЛИЗА ТЕКСТОВ. Computational nanotechnology, 2: 35-44. DOI: 10.33693/2313-223X-2022-9-2-35-44
Список литературы:
Abbasi A., Javed A.R., Iqbal F. et al. Authorship identification using ensemble learning. Scientific Reports. 2022. No. 12 (1). DOI: 10.1038/s41598-022-13690-4.
Alibasic A., Upadhyay H., Simsekler M.C.E. et al. Evaluation of the trends in jobs and skill-sets using data analytics: A case study. Journal of Big Data. 2022. No. 9 (1). DOI: 10.1186/s40537-022-00576-5.
Lee C.K.M., Kam K.H. Ng, Chun-Hsien Chen et al. Tiffany Tsoi, American sign language recognition and training method with recurrent neural network. Expert Systems with Applications. 2021. Vol. 167.
Khurshid S., Reeder C., Harrington L.X. et al. Cohort design and natural language processing to reduce bias in electronic health records research. Npj Digital Medicine. 2022. Vol. 5. No. 47. URL: https://doi.org/10.1038/s41746-022-00590-0
Ledro C., Nosella A., Vinelli A. Artificial intelligence in customer relationship management: Literature review and future research directions. Journal of Business and Industrial Marketing. 2022. No. 37 (13). Pp. 48-63. DOI: 10.1108/JBIM-07-2021-0332.
Li S., Wang G., Luo Y. Tone of language, financial disclosure, and earnings management: A textual analysis of form 20-F. Financial Innovation. 2022. No. 8 (1). DOI: 10.1186/s40854-022-00346-5.
Luo Z., Zhu M. Recurrent neural networks with mixed hierarchical structures for natural language processing.International Joint Conference on Neural Networks (IJCNN). 2021. Pp. 1-8. DOI: 10.1109/IJCNN52387.2021.9533347.
Mohd Usama, Belal Ahmad, Enmin Song et al. Attention-based sentiment analysis using convolutional and recurrent neural network. Future Generation Computer Systems. 2020. Pp. 571-578.
Nijhawan T., Attigeri G., Ananthakrishna T. Stress detection using natural language processing and machine learning over social interactions. Journal of Big Data. 2022. No. 9 (1). DOI: 10.1186/s40537-022-00575-6.
Orea-Giner A., Fuentes-Moraleda L., Villacé-Molinero T. et al. Does the implementation of robots in hotels influence the overall tripadvisor rating? A text mining analysis from the Industry 5.0 approach. Tourism Management. 2022. No. 93. DOI: 10.1016/j.tourman.2022.104586.
Riezler S., Hagmann M. Validity, reliability, and significance: Empirical methods for NLP and data science. Synthesis Lectures on Human Language Technologies. 2022. No. 14 (6). Pp. 1-147. DOI: 10.2200/S01137ED1V01Y202110HLT055.
Sherstinsky A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena. 2020. Vol. 404.
Turner R.J., Coenen F., Roelofs F. et al. Information extraction from free text for aiding transdiagnostic psychiatry: Constructing NLP pipelines tailored to clinicians’ needs. BMC Psychiatry. 2022. No. 22 (1). DOI: 10.1186/s12888-022-04058-z.
Dankers V., Langedijk A., McCurdy K. et al. Generalising to German plural noun classes, from the perspective of a recurrent neural network. Proceedings of the 25th Conference on Computational Natural Language Learning. 2021. Pp. 94-108.
Zhang T., Schoene A.M., Ji S., Ananiadou S. Natural language processing applied to mental illness detection: A narrative review. Npj Digital Medicine. 2022. No. 5 (1). DOI: 10.1038/s41746-022-00589-7.
Ключевые слова:
анализ тональности текста, искусственные нейронные сети, машинное обучение, рекуррентные нейронные сети, длинная цепь элементов краткосрочной памяти, обработка естественного языка.