КОМПЬЮТЕРИЗИРОВАННАЯ СИСТЕМА ДЛЯ МНОГОУГЛОВЫХ ИЗМЕРЕНИЙ ПРИ СЧИТЫВАНИИ АНАЛИТИЧЕСКИХ ЧИПОВ НА ПЛАТФОРМЕ КОРРЕЛЯЦИОННОЙ ЭЛЕКТРОННО-ОПТИЧЕСКОЙ МИКРОСКОПИИ (CLEM) В КОНТРОЛИРУЕМЫХ ФИЗИКО-ХИМИЧЕСКИХ УСЛОВИЯХ В КОЛОННЕ С ВАКУУМИРОВАНИЕМ И НАПУСКОМ ГАЗА (ESEM)
(Стр. 9-16)

Подробнее об авторах
Градов Олег Валерьевич research fellow, Photobionics Laboratory (0412), Department of Dynamics of Biological and Chemical Processes; senior researcher / senior research fellow, Laboratory of Biological Effects of Nanostructures (005)
Институт химической физики им. Н.Н. Семенова Российской Академии наук; Институт энергетических проблем химической физики Российской Академии наук им. В.Л. Тальрозе
Чтобы читать текст статьи, пожалуйста, зарегистрируйтесь или войдите в систему
Аннотация:
В данной работе описывается компьютеризированная система с многоосным гониометрическим столиком для многоугловых измерений при считывании аналитических чипов на платформе корреляционной электронно-оптической микроскопии (CLEM - Correlative Light-Electron Microscopy) при контролируемых физико-химических условиях измерений / контролируемой атмосфере в колонне TESLA с вакуумированием рабочего объёма и напуском газа (ESEM - Environmental Scanning Electron Microscopy). Предварительно аргументируется необходимость реализации многоугловой аналитики, причем как для оптических, так и для корпускулярных методов измерений на любой конструктивно-эквивалентной установке. Приводятся аргументы, свидетельствующие о возможности использования подобной геометрии установки не только для многоугловых измерений аналитических чипов (либо с использованием встроенных КМОП- или ПЗС-матриц - детекторов систем проекционной безлинзовой микроскопии на чипе в центральной зоне гониометрического стола в контакте с образцами, либо на месте детектора проходящих электронов TED), но и в исследованиях природных сред - в частности, минеральных структур и структур биоминерализации при различных физико-геохимических условиях их формирования и замещения, с различным текстурно-пространственным разрешением. Предложен принцип комплементарных координат, в которых фиксируемые дескрипторы, значения переменных, по которым производится идентификация объектов / их структурных компонент или компартментов, проецируются на согласованную с геометрией объекта (с соответствующим размерам его структурных компонент разбиением) сетку, а исследование распределения переменных происходит в нескольких системах координат, колокализованных друг с другом. В качестве кастомизированного для данной установки программного решения приводится репрезентация, использующая одновременно эйлеровы угловые координаты и кватернионы.
Образец цитирования:
Градов О.В., (2018), КОМПЬЮТЕРИЗИРОВАННАЯ СИСТЕМА ДЛЯ МНОГОУГЛОВЫХ ИЗМЕРЕНИЙ ПРИ СЧИТЫВАНИИ АНАЛИТИЧЕСКИХ ЧИПОВ НА ПЛАТФОРМЕ КОРРЕЛЯЦИОННОЙ ЭЛЕКТРОННО-ОПТИЧЕСКОЙ МИКРОСКОПИИ (CLEM) В КОНТРОЛИРУЕМЫХ ФИЗИКО-ХИМИЧЕСКИХ УСЛОВИЯХ В КОЛОННЕ С ВАКУУМИРОВАНИЕМ И НАПУСКОМ ГАЗА (ESEM). Computational nanotechnology, 4: 9-16.
Список литературы:
Smith G.B. Theory of angular selective transmittance in oblique columnar thin films containing metal and voids // Applied optics. 1990. Vol. 29. № 25. Pр. 3685-3693.
Le Bellac D., Niklasson G.A., Granqvist C.G. Angular-selective optical transmittance of anisotropic inhomogeneous Cr-based films made by sputtering // Journal of applied physics. 1995. Vol. 77. № 12. Pр. 6145-6151.
Le Bellac D., Azens A., Granqvist C.G. Angular selective transmittance through electrochromic tungsten oxide films made by oblique angle sputtering // Applied physics letters. 1995. Vol. 66. № 14. Pр. 1715-1716.
Le Bellac D., Niklasson G.A., Granqvist C.G. Angular-selective optical transmittance of highly transparent Al-oxide-based films made by oblique-angle sputtering // Journal of applied physics. 1995. Vol. 78. № 4. Pр. 2894-2896.
La Bellac D., Niklasson G.A., Granqvist C.G. Angular selective optical transmittance through Cr-based films made by oblique angle sputtering: experiment and theory // Journal of Physics D: Applied Physics. 1995. Vol. 28. № 3. Pр. 600.
Smith G.B. et al. Cermets for angular selective transmittance // Solar energy materials and solar cells. 1992. Vol. 25. № 1-2. Pр. 149-167.
Mbise G.W., Niklasson G.A., Granqvist C.G., Palmer S. Angular-selective optical transmittance through obliquely evaporated Cr films: Experiments and theory // Journal of applied physics. 1996. Vol. 80. № 9. Pр. 5361-5364.
Jahan F., Smith G.B. Investigation of angular selective optical properties of silver/titanium oxide cermet thin films // Thin solid films. 1998. Vol. 333. № 1-2. Pр. 185-190.
Smith G.B., Dligatch S., Sullivan R., Hutchins M.G. Thin film angular selective glazing // Solar Energy. 1998. Vol. 62. № 3. Pр. 229-244.
Smith G.B., Dligatch S., Jahan F. Angular selective thin film glazing // Renewable Energy. 1998. Vol. 15. № 1-4. Pр. 183-188.
Delsante A.E., Edmonds I.R., Reppel J. Angular-Selective Glazing for Radiant Heat Control in Buildings: Modelling Results // ANZSES Solar [www.anzses.org/]. 1997.
Mbise G.W., Le Bellac D., Niklasson G.A., Granqvist C.G. Angular selective window coatings: theory and experiments // Journal of Physics D: Applied Physics. 1997. Vol. 30. № 15. Pр. 2103.
Mbise G., Smith G.B., Niklasson G.A., Granqvist C.G. Angular selective window coatings: Theory and experiment. // Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VIII. - Proceedings International Society for Optics and Photonics. 1989. Т. 1149. Рр. 179-200.
Mutitu J.G., Shi S., Barnett A., Prather D.W. Angular selective light filter based on photonic crystals for photovoltaic applications // IEEE Photonics Journal. 2010. Vol. 2. № 3. Pр. 490-499.
Dissanayake D., Roberts B., Ku P.C. Angular selective backreflector for semitransparent photovoltaics // Applied Physics Letters. 2012. Vol. 101. № 6. Pр. 063302-1-063302-4.
Fernandes L.L., Lee E.S., McNeil A., Jonsson J.C. et al. Angular selective window systems: Assessment of technical potential for energy savings // Energy and Buildings. 2015. Vol. 90. Pр. 188-206.
Peters M. et al. Lighttrapping with angular selective filters. // Proceedings of the 23 rd European Photovoltaic Solar Energy Conference and Exhibition. - Valencia, Spain. 1-5 September, 2008. Рр. 363-367.
Zakirullin R.S., Letuta S.N. A smart window for angular selective filtering solar radiation // Solar Energy. 2015. Vol. 120. P. 585-592.
한국에너지기술연구원. Angular Solar Selective Panels 에서의
Bi-Directional Transmission 평가에 관한 연구. 2005.
김기세 et al. Angular Solar Selective Panels 에서의 Bi-Directional Transmission 평가에 관한 연구 //한국태양에너지학회 학술대회 논문집. 2003.
Datas A., Celanovic I., Algora C. Efficiency limit of planar geometry solar thermophotovoltaic systems using angular selective absorbers //9th World Conference on thermophotovoltaic generation of electricity. 25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conference on Photovoltaic Energy Conversion. 2010. Рр. 5531-5535.
Blanco M.J., Martı́n J.G., Alarcón-Padilla D.C. Theoretical efficiencies of angular-selective non-concentrating solar thermal systems // Solar Energy. 2004. Vol. 76. № 6. Pр. 683-691.
Tesfamichael T., Wäckelgård E. Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors // Solar Energy. 2000. Vol. 68. № 4. Pр. 335-341.
Sakr E., Dhaka S., Bermel P. Asymmetric angular-selective thermal emission // Proceedings of International Society for Optics and Photonics. 2016. Т. 9743. Рр. 97431D-1-97431D-8.
Sakr E., Bermel P. Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures // Proceedings of International Society for Optics and Photonics. 2017. Т. 10099. Рр. 100990A1-100990A-8.
Sakr E., Bermel P. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters // Optics Express. 2017. Vol. 25. № 20. Pр. A880-A895.
Mbise G., Smith G.B., Niklasson G.A., Granqvist C.G. Angular-selective optical properties of Cr films made by oblique-angle evaporation // Applied Physics Letters. 1989. Vol. 54. № 11. Pр. 987-989.
Zakirullin R.S. Сreating optical filters with angular-selective light transmission // Appl. Opt. 2015. Vol. 54. № 21. Pр. 6416-6419.
Hossain A.K.M.M., Smith G.B. Production of angular-selective films by interdiffusion for novel spectral responses // Proceedings o International Society for Optics and Photonics. 1999. Vol. 3789. Pр. 58-66.
Shen Y., Hsu C.W., Joannopoulos J.D., Soljačić M. Air-compatible broadband angular selective material systems // arXiv preprint. 2015. arXiv: 1502.00243. Pр. 1-5.
Mbise G.W. Spectral and Angular Selective Surfaces // Proc. Fifth Collage on Thin Film Technology. 1998. Т. 5. P. 7.
Glebov L., Smirnov V., Tabirian N., Zeldovich B. Implementation of 3D angular selective achromatic diffraction optical grating device // OSA Technical Digest (CD). Frontiers in Optics 2003, Talk WW3 DOI: 10.1364/FIO.2003.WW3.
Zakirullin R.S. Grating optical filter for pre-adapted angular selective regulation of directional light transmission // Proceedings of International Society for Optics and Photonics, 2013. Т. 8785. Рр. 87851P-1-87851P-15.
Jung C.C. et al. The generation of three-dimensional anisotropies in thin polymer films by angular selective photoproduct formation and annealing // Macromolecules. 2005. Vol. 38. № 10. Pр. 4324- 4330.
Kolomzarov Y. et al. Some peculiarities of angular selective reflection of cholesteric liquid crystals in an electric field // Japanese journal of applied physics. 1999. Vol. 38. № 2. Pр. 814-817.
Vytovtov K.A., Arhipov A.D. Angular Selective Properties of One-Dimensional Anisotropic Photonic Crystals // Telecommunications and Radio Engineering. 2011. Vol. 70. № 14. Pр. 1305-1313.
Palmer S., Mbise G.W., Niklasson G.A., Granqvist C.G. Angular selective optical properties of thin films: Measurement of polar and azimuthal transmittance // Solar energy materials and solar cells. 1996. Vol. 44. № 4. Pр. 397-403.
Smith G.B., Dligatch S., Ng M.W. Low-emittance angular selective window systems // Proceedings of International Society for Optics and Photonics. 1995. Т. 2531. Рр. 317-326.
Mbise G.W., Le Bellac D., Niklasson G.A., Granqvist C.G. Angular selective window coatings // Proceedings of International Society for Optics and Photonics. 1994. Т. 2255. Рр. 182-182.
Granqvist C.G., Le Bellac D., Niklasson G.A. Angular selective window coatings: effective medium theory and experimental data on sputter-deposited films // Renewable energy. 1996. Vol. 8. № 1-4. Рр. 530-539.
Smith G.B., Ditchburn R.J., Ng M.W. Optimum materials choice for angular selective window coatings // Energy and Environment into the 1990s. 1990. Vol. 3. Pр. 1406-1410.
Edmonds I.R., Jardine P.A., Rutledge G. Daylighti with angular-selecti e skylights: Predicted performance // Internati Journal of Lighting Research and Technology. 1996. Vol. 28. № 3. Pр. 122-130.
Hashmi M. et al. Bi-Directional Transmission Assessment Study of Angular Solar Selective Panels // Journal of the Korean Solar Energy Society. 2004. Vol. 24. № 3. Pр. 55-63.
Tremsin A.S. et al. High efficiency angular selective detection of thermal and cold neutrons // Proceedings of International Society for Optics and Photonics. 2008. Vol. 6945. Рр. 69451A-1-69451A-12.
Dligatch S., Cheary R.W., Smith G.B. An analysis of Ag/Al2O3 angular selective films by X-ray reflectivity // Thin solid films. 1998. Vol. 312. № 1-2. Pр. 4-6.
Chang P.H., Kuo C.Y., Chern R.L. Wave propagation in bianisotropic metamaterials: angular selective transmission // Optics express. 2014. Vol. 22. № 21. Pр. 25710-25721.
Poilasne G. et al. Metallic photonic band-gap materials (MPBG) as angular selective reflector or radome: Application to antenna grating lobe reduction. // Annales des télécommunications. 2000. Vol. 55. № 5-6. Pр. 207-215.
Rodríguez-Ulibarri P., Beruete M. Nonbianisotropic complementary split ring resonators as angular selective metasurfaces // JOSA B. 2017. Vol. 34. № 7. Pр. D56-D61.
Yongqiang Hou Y.H. et al. Analysis of angular-selective performances of obliquely deposited birefringent thin film // Chinese Optics Letters. 2013. Vol. 11. № 10. Pр. 103101-103105.
Winzen D. et al. Design of a pulsed angular selective electron gun for the KATRIN main spectrometer // Verhandlungen der Deutschen Physikalischen Gesellschaft. 2012. URL: https://inis.iaea.org/search/ search.aspx?orig_q=RN:45001280
Zacher M. et al. An angular selective electron gun for the KATRIN experiment // Verhandlungen der Deutschen Physikalischen Gesellschaft. 2013. URL https://inis.iaea.org/search/search.aspx?orig_ q=RN:45105809
Winzen D. Development of an angular selective electron gun for the KATRIN main spectrometer. Diploma thesis. Westfälische Wilhelms-Universität Münster (Institut für Kernphysik Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 9 48149 Münster). 2014. 91 р.
Beck M. et al. An angular-selective electron source for the KA- TRIN experiment // Journal of Instrumentation. 2014. Т. 9. № 11. Рр. P11020-1-P11020-21.
Valerius K. et al. Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment // Journal of Instrumentation. 2014. Т. 6. № 1. Рр. P01002-1-P01002-17.
Zacher M. High-field electrodes design and an angular-selective photoelectron source for the KATRIN spectrometers. Doctoral dissertation. 2014. 281 р.
Behrens J. et al. Commissioning of a pulsed UV photoelectron source at the KATRIN main spectrometer // Verhandlungen der Deutschen Physikalischen Gesellschaft. 2014. URL: https://inis.iaea.org/search/ search.aspx?orig_q=RN:46106059
Kim H.J., Kim S.B., Kim J.K., Jung Y.M. Two-dimensional heterospectral correlation analysis of wide-angle X-ray scattering and infrared spectroscopy for specific chemical interactions in weakly interacting block copolymers // The Journal of Physical Chemistry B. 2006. Vol. 110. № 46. Pр. 23123-23129.
Iiariuson R.J., Putnis A. Magnetic properties of the magnetite-spinel solid solution: Saturation magnetization and cation distributions // American Mineralogist. 1995. Vol. 80. № 3-4. Pр. 213-221.
Harrison R.J., Putnis A. Interaction between exsolution microstruc- tures and magnetic properties of the magnetite-spinel solid solution // American Mineralogist. 1997. Vol. 82. № 1-2. Pр. 131-142.
Harrison R.J. Magnetic properties of the magnetite-spinel solid solution. Diss.. University of Cambridge, 1997.
Li J. et al. Controlled cobalt doping in the spinel structure of magnetosome magnetite: new evidences from element-and site-specific X-ray magnetic circular dichroism analyses // Journal of the Royal Society Interface. 2016. Vol. 13. № 121. Pр. 20160355-1-20160355-11.
Ferchmin A.R., Klama S., Krompiewski S. Influence of disorder on the magnetic properties of ferrites with spinel structure: Application to magnetite // Czechoslovak Journal of Physics B. 1979. Vol. 29. № 8. Pр. 883-892.
Blusztajn J., Hart S.R., Shimizu N., McGuire A.V. Trace-element and isotopic characteristics of spinel peridotite xenoliths from Saudi Arabia // Chemical Geology. 1995. Vol. 123. № 1-4. Pр. 53-65.
Stolz A.J., Davies G.R. Chemical and isotopic evidence from spinel lherzolite xenoliths for episodic metasomatism of the upper mantle beneath southeast Australia // Journal of Petrology. 1988. № 1. Pр. 303-330.
Nguyen A., Zinner E., Lewis R.S. Identification of small presolar spinel and corundum grains by isotopic raster imaging // Publications of the Astronomical Society of Australia. 2003. Vol. 20. № 4. Pр. 382-388.
Zinner E. et al. Abundances and Oxygen Isotopic Compositions of Presolar Spinel Grains // Meteoritics and Planetary Science Supplement. 2002. Vol. 37. P. A154.
Gyngard F. et al. Extreme Oxygen and Magnesium Isotopic Anomalies in Presolar Spinel Grains from the Murray Carbonaceous Meteorite // 40th Lunar and Planetary Science Conference. 2009. ID: 1386. URL: http://adsabs.harvard.edu/abs/2009LPI..40.1386G
Koļoļp L. et al. New constraints on the relationship between 26 Al and oxygen, calcium, and titanium isotopic variation in the early Solar System from a multielement isotopic study of spinel-hibonite inclusions // Geochimica et Cosmochimica Acta. 2016. Vol. 184. Pр. 151-172.
Grossman L., Fahey A.J., Zinner E. Carbon and oxygen isotopic compositions of individual spinel crystals from the Murchison meteorite // 19th Lunar and Planetary Science Conference. 1988. P. 435. URL: http://adsabs.harvard.edu/full/1988LPI..19.435G
Virag A., Zinner E., Lewis R.S., Amari S. Oxygen isotopic compositions of spinel and corundum grains from the Murchison carbonaceous chondrite // Meteoritics. 1989. Vol. 24. P. 334.
Podosek F.A., Prombo C.A., Grossman L., Zinner E.K. Chromium isotopic compositions of individual spinel crystals from the Murchison meteorite // Meteoritics. 1991. Vol. 26. P. 385.
Zinner E.K., Caillet C., El Goresy A. Mgand O-Isotopic Compositions of Periclase, Spinel, and Melilite from Vigarano CAI 477B // 20th Lunar and Planetary Science Conference. 1989. Р. 1245.
MacPherson G.J., Davis A.M. Mg Isotopic and Trace Element Compositions of Spinel-Pyroxene Inclusions in the Mighei C2 Meteorite // 22nd Lunar and Planetary Science Conference. 1991. Т. 22. Р. 841.
URL: http://adsabs.harvard.edu/full/1991LPI..22.841M
Tomita A et al. Luminescence channels of manganese-doped spinel // Journal of Luminescence. 2004. Vol. 109. № 1. Pр. 19-24.
Nakagawa H., Ebisu K., Zhang M., Kitaura M. Luminescence properties and afterglow in spinel crystals doped with trivalent Tb ions // Journal of luminescence. 2003. Vol. 102. Pр. 590-596.
Bandyopadhyay P.K., Summers G.P. Luminescence and photoconductivity in magnesium aluminum spinel // Physical Review B. 1985. Vol. 31. № 4. P. 2422.
Yoshimura E.M., Yukihara E.G. Optically stimulated luminescence of magnesium aluminate (MgAl2O4) spinel // Radiation measurements. 2006. Vol. 41. № 2. Pр. 163-169.
Rauwel E. et al. ALD applied to conformal coating of nanoporous γ-alumina: spinel formation and luminescence induced by europium doping // Journal of The Electrochemical Society. 2012. Vol. 159. № 4. Pр. P45-P49.
Broussell I. et al. Luminescence of the Cr3+ ions in spinel-type α-ZnAl2S4: Cr single crystals // Journal of luminescence. 1997. Vol. 72. Pр. 640-642.
Luchechko A., Kravets O., Kostyk L., Tsvetkova O. Luminescence spectroscopy of Eu3+ and Mn2+ ions in MgGa O spinel // Radiation Measurements. 2016. Vol. 90. Pр. 47-50.
Gritsyna V.T., Kazarinov Y.G., Kobyakov V.A., Reimanis I.E. Radiation-induced luminescence in magnesium aluminate spinel crystals and ceramics // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2006. Vol. 250. № 1-2. Pр. 342-348.
Gritsyna V.T., Kazarinov Y.G., Kobyakov V.A. X-ray luminescence of defects in spinel single crystals // Journal of Applied Spectroscopy. 2004. Vol. 71. № 3. Pр. 395-399.
Mironova-Ulmane N. et al. Luminescence and EPR spectroscopy of neutron-irradiated single crystals of magnesium aluminium spinel // Radiation Measurements. 2016. Vol. 90. Pр. 122-126.
Kazarinov Y.G., Gritsyna V.T., Kobyakov V.A., Sickafus K.E. Luminescence properties of spinel single crystals after ionizing irradiation // Voprosi Atomnoi nauki i tehniki. 2002. Т. 83. Рр. 53-57.
Katsumata T. et al. X-ray Excited Optical Luminescence from Mn Doped Spinel Crystals // ECS Solid State Letters. 2014. Vol. 3. № 7. Pр. R23-R25.
Gritsyna V., Kazarinov Y., Moskvitin A. Radio-luminescence of defects and impurity ions in magnesium aluminates spinel crystals // Solid State Phenomena. 2013. Vol. 200. Pр. 203-208.
Gritsyna V.T., Kazarinov Y.G., Moskvitin A.O. Radio-luminescence of defects and impurity ions in magnesium aluminates spinel // IEEE International Conference on Oxide Materials for Electronic En- gineering (OMEE), 2012. IEEE, 2012. Рр. 153-154.
Tyutyunik О.K., Moskvitin А.О., Kazarinov Y.G., Gritsyna V.T. Radioluminescence mechanism of magnesium aluminate spinel transparent ceramics // Functional materials. 2010. Vol. 17. № 1. P. 41.
Bratt P.A. Radioluminescence of Spinel as a Light Source for Use in HPLC Detection. Diss.., 1993.
Guimarães C.C., Moralles M., Okuno E. GEANT4 simulation of the angular dependence of TLD-based monitor response // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2007. Vol. 580. № 1. Pр. 514-517.
Arslan H., Bektasoglu M. Azimuthal angular dependence study of the atmospheric muon charge ratio at sea level using Geant4 // Journal of Physics G: Nuclear and Particle Physics. 2012. Vol. 39. № 5. P. 055201-1-055201-8.
Arslan H., Bektasoglu M. Angular and energy distribution for parent primaries of cosmic muons at the sea level using Geant4 // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2015. Vol. 778. Pр. 1-5.
Beričič J., Snoj L. On the calculation of angular neutron flux in MCNP // Annals of Nuclear Energy. 2017. Vol. 100. Pр. 128-149.
Chen Y., Ahmad S. SU-GG-T-333: Neutron Yield and Angular Distribution From the 250 MeV Proton Interactions in Water: A Geant4 Monte Carlo Study // Medical Physics. 2008. Vol. 35. № 6. Part 14. Pр. 2802-2802.
Hong X., Gao H. TH-E-BRE-01: A 3D Solver of Linear Boltzmann Transport Equation Based on a New Angular Discretization Method with Positivity for Photon Dose Calculation Benchmarked with Geant4 // Medical Physics. 2014. Vol. 41. № 6. Part 33. Pр. 565-565.
Cho G.S. et al. EP-1499: GEANT4 Monte-carlo simulations for the luminescence properties of Gd2O3: Eu scintillator // Radiotherapy and Oncology. 2016. Vol. 119. Pр. S692-S693.
Gorgolewski A. et al. SOLPEX X-ray polarimeter detector luminescence background calculated using Geant 4 simulation software // Proceedings of International Society for Optics and Photonics. September 2016. Т. 10031. Рр. 10031-1-10031-7.
Gradov O.V., Jablokov A.G. Novel morphometrics-on-a-chip: CCD- or CMOS-lab-on-a-chip based on discrete converters of different physical and chemical parameters of histological samples into the optical signals with positional sensitivity for morphometry of non-optical patterns // Journal of Biomedical Technologies. 2016. № 2. Pр. 1-29.
Gradov O.V., Jablokov A.G. Multiparametric lab-on-a-chip with miltiple biophysical signal converters as a novel tool for experimental stem cell biology and control equipment for hematopoetic stem cell transplantation // Cellular Therapy and Transplantation. 2017. Vol. 6. № 3. Pр. 41-42.
Grubin C. Derivation of the quaternion scheme via the Euler axis and angle // Journal of Spacecraft and Rockets. 1970. Vol. 7. № 10. Pр. 1261-1263.
Isenberg D.R. Quaternion and Euler-angle based approaches to the dynamical modeling, position control, and tracking control of a space robot. Doctoral dissertation. The University of North Carolina at Charlotte), 2009. 240 р. URL: https://dl.acm.org/citation.cfm?id=1835347.
Yeh Y., Hung J.C. DDA realizations of attitude algorithms (Digital differential analyzers number comparison in realization of direction cosine, Euler angle and quaternion attitude algorithms) // Hawaii International Conference on System Sciences, 5th, University of Hawaii, Honolulu, Hawaii. 1972. Pр. 430-433.
Buckler K.A. Quaternion estimation using both body rate and euler angle measurements. Doctoral dissertation. University of Colorado at Colorado Springs, 1988.
Usta U.Y. Comparison of quaternion and euler angle methods for joint angle animation of human figure models. Naval Postgraduate School Monterey CA. 1999.
Fan Z., Xibin C., Jingxiang Z. A new large-scale transformation algorithm of quaternion to Euler angle // Journal of NUST. 2002. Vol. 26. № 4. Issue 125. Pр. 376-380.
Wie B., Barba P.M. Quaternion feedback for spacecraft large angle maneuvers // Journal of Guidance, Control, and Dynamics. 1985. Vol. 8. № 3. Pр. 360-365.
Hall J.S., Romano M., Cristi R. Quaternion feedback regulator for large angle maneuvers of underactuated spacecraft // American Control Conference (ACC), 2010. IEEE, 2010. Рр. 2867-2872.
Bong W., Barba P. Quaternion feedback for spacecraft large angle maneuver // Journal of Guidance, Control, and Dynamics. 1985. Vol. 8. № 3. Pр. 360-365.
Hosokawa T., Yamashita Y., Shima M. Application of the Quaternion to Spacecraft's Large Angle Attitude Control // Transactions of the Society of Instrument and Control Engineers. 1990. Vol. 26. № 4. Pр. 467-473.
Grubin C. Derivation of the Quaternion Scheme via the Euler angle and Axis // Journal Spacecraft and Rockets. 1970. Vol. 7. № 10. Pр. 1261-1263.
Li Q.I.N., Zhang W., Feng P.A.N. Quaternion Method for Kinematics Modeling of High Attack-Angle Flying Carrier // Journal of North University of China (Natural Science Edition). 2006. Vol. 3. [VINITI Translation].
Lu J., Xie L., Li B. Applied quaternion optimization method in transfer alignment for airborne AHRS under large misalignment angle // IEEE Transactions on Instrumentation and Measurement. 2016. Vol. 65. № 2. Pр. 346-354.
Qin L., Zhang W., Fan F. Quaternion Method for Kinematics Modeling of High Attack-Angle Flying Carrier // Journal of North University of China (Natural Science Edition). 2006. Vol. 27. № 3. P. 276-279.
Sun D., Tian Z., Han L. Simulation on Quaternion Calculate Attitude Angle of the Strapdown Inertial Navigation System // Journal of Projectiles, Rockets, Missiles and Guidance. 2009. [VINITI Translation].
Won S.H., Parnian N., Golnaraghi F., Melek W. A quaternion-based tilt angle correction method for a hand-held device using an inertial measurement unit // Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE. IEEE, 2008. Рр. 2971-2975.
Dong-Mei S., Zeng-Shan T., Ling-Jun H. Simulation on quaternion calculate attitude angle of the strap down inertial navigation system // Journal of Projectiles, Rockets, Missiles and Guidance. 2009. Vol. 29. № 1. P. 51-53.
Park K.K., Park S.S., Ryoo C.K. Three-dimensional impact angle control guidance law using quaternion // Control, Automation and Systems (ICCAS), 2015 15th International Conference on. IEEE, 2015. Рр. 452-456.
Grubin C. Attitude determination for a strapdown inertial system using the euler axis/angle and quaternion parameters // Guidance and Control Conference. 1973. Р. 900.
Favre J., Jolles B.M., Siegrist O., Aminian K. Quaternion-based fusion of gyroscopes and accelerometers to improve 3D angle measurement // Electronics Letters. 2006. Vol. 42 № 11. Pр. 612-614.
Lim S. New quaternion feedback control for efficient large angle maneuvers //AIAA Guidance, Navigation, and Control Conference and Exhibit. 2001. Р. 4211.
Chkareuli J.L. CP violation and the Cabibbo angle in the quaternion model // JETP Lett. 1979. [VINITI Translation].
Wei C. Research and application of attitude angle estimation algorithm based on quaternion and Kalman filter. Doctoral dissertation, Master’s thesis, Yanshan University, 2015.
Zhang B., Chen L. Spline Filter Approach for Line-of-Sight Rate by Line-of-Sight Angle Quaternion Sequence // Journal of Astronautics. 2006. [VINITI Translation]. Original URL: dict.cnki. net/h_1648333000.html
Xiao-dong T. Optimal control of guise-angle of ship based on quaternion arithmetic // Journal of Qingdao University (Natural Science). 2003. [VINITI Translation].
Wang J., Guo X., Zhou Z. Es-tablishment of errors model for SINS on a stationary base with large azimuth misalignment angle based on quaternion // Piezoelectrics Acoustooptics. 2014. Vol. 36. № 5. Pр. 805-809.
Watanabe T., Teruyama Y., Ohashi K. Comparison of Angle Measurements Between Integral-Based and Quaternion-Based Methods Using Inertial Sensors for Gait Evaluation // International Joint Conference on Biomedical Engineering Systems and Technologies. Springer, Cham, 2014. Pр. 274-288.
Quaternion root-MUSIC algorithm for angle estimation in bistatic MIMO radar // Dianzi Yu Xinxi Xuebao (Journal of Electronics and Information Technology). 2012. [VINITI Translation].
Zhang X., Chen C., Li J. Angle estimation using quaternion-ESPRIT in bistatic MIMO-radar // Wireless personal communications. 2013. Vol. 69. № 2. Pр. 551-560.
Li J., Zhang X. 2D-angle estimation algorithm using quaternion theory in bistatic MIMO-radar // Proceedings of the 3rd International. Conference on Information Science and Engineering (ICISE’11). 2011. Рр. 752-755.
Gradov O.V. et al. Biophysical mapping with the angular resolution using lab-on-a-chip. Scholars’ Press Düsseldorf, Germany, ISBN 978-620-2-30431-3. 274 р.