Bell-Inequality and Two Slit Experiments: Comparing Misapplication of Classical Probability by Feynman and Bell
(Стр. 19-22)

Подробнее об авторах
Khrennikov A.
Linnaeus University; International Center for Mathematical Modeling in Physics and Cognitive Sciences Vaxjo
Växjö, Sweden
Оплатить 390 руб. (Картой) Оплатить 390 руб. (Через QR-код)

Нажимая на кнопку купить вы соглашаетесь с условиями договора оферты

Аннотация:
We start with the discussion on misapplication of classical probability theory by Feynman in his analysis of the two slit experiment (by following the critical argumentation of Koopman, Ballentine, and the author of this paper). The seed of Feynman’s conclusion on the impossibility to apply the classical probabilistic description for the two slit experiment is treatment of conditional probabilities corresponding to different experimental contexts as unconditional ones. Then we move to the Bell type inequalities. Bell applied classical probability theory in the same manner as Feynman and, as can be expected, he also obtained the impossibility statement. In contrast to Feynman, he formulated his no-go statement not in the probabilistic terms, but by appealing to nonlocality. This note can be considered as a part of the author’s attempts for getting rid off nonlocality from quantum physics.
Образец цитирования:
Khrennikov A.., (2021), BELL-INEQUALITY AND TWO SLIT EXPERIMENTS: COMPARING MISAPPLICATION OF CLASSICAL PROBABILITY BY FEYNMAN AND BELL. Computational nanotechnology, 3 => 19-22.
Список литературы:
Bell J.S. On the Einstein-Podolsky-Rosen paradox. Physics. 1964. No. 1. Pp. 195-200.
Bell J.S. Speakable and unspeakable in quantum mechanics. 2nd ed. Cambridge, UK: Cambridge University Press, 2004.
Bell J.S. On the problem of hidden variables in quantum theory. Rev. Mod. Phys. 1966. No. 38. P. 450.
Clauser J.F., Horne M.A., Shimony A., Holt R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 1969. No. 23.P. 880.
Aspect A. Experimental tests of Bell’s inequalities in atomic physics. Atomic Physics 8. Proceedings of the Eighth International Conference on Atomic Physics. 1982. I. Lindgren, A. Rosen. S. Svanberg (eds.).
Aspect A. Bell’s Theorem: The naive view of an experimentalist. http: quant-ph/0402001
Khrennikov A.Yu. Interpretations of probability. VSP Int. Sc. Publishers. Utrecht; Tokyo, 1999; 2nd ed. De Gruyter, Berlin, 2009.
Khrennikov A. Non-Kolmogorov probability models and modified Bell’s inequality. J. Math. Phys. 2000. No. 41. Pp. 1768-1777.
Khrennikov A. Contextual approach to quantum formalism. Berlin-Heidelberg-New York: Springer, 2009.
Kupczynski M. Bertrand’s paradox and Bell’s inequalities. Phys. Lett. A. 1987. No. 121. Pp. 205-207.
Khrennikov A. Get rid of nonlocality from quantum physics. Entropy. 2019. No. 21 (8). P. 806.
Khrennikov A. Bell argument: Locality or realism? Time to make the choice. AIP Conf. Proc. 2012. No. 1424. Pp. 160-175. https://arxiv.org/pdf/1108.0001v2.pdf
Khrennikov A. Bohr against Bell: Complementarity versus nonlocality. Open Phys. 2017. No. 15. Pp. 734-773.
Khrennikov A. Quantum versus classical entanglement: eliminating the issue of quantum nonlocality. Found Phys. 2020. No. 50. Pp. 1762-1780.
Khrennikov A. Two faced Janus of quantum nonlocality. Entropy. 2020. No. 22. P. 303. arXiv:2001.02977 [quant-ph].
Boughn S. Making sense of Bell’s theorem and quantum nonlocality. Found. Phys. 2017. No. 47. Pp. 640-657.
Khrennikov A. CHSH inequality: Quantum probabilities as classical conditional probabilities. Found. Phys. 2015. No. 45. Pp. 711-725.
Khrennikov A., Alodjants A. Classical (local and contextual) probability model for Bohm-Bell type experiments: No-signaling as independence of random variables. Entropy. 2018. No. 21. P. 157.
Feynman P. The concept of probability in quantum mechanics. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. 1951. Pp. 553-541. Univ. of California Press. Berkeley, California.
Feynman R., Hibbs A. Quantum mechanics and path integrals. New York: McGraw-Hill, 1965.
Koopman B.O. Quantum theory and the foundations of probability. In: Applied probability. L.A. MacColl (ed.). New York: McGraw-Hill, 1955. Pp. 97-102.
Ballentine L. Probability in quantum mechanics. Annals of New York Academy of Science, Techniques and Ideas in Quantum Measurement Theory. 1986. Vol. 480. No. 1. Pp. 382-392.
Khrennikov A. The principle of supplementarity: A contextual probabilistic viewpoint to complementarity, the interference of probabilities, and the incompatibility of variables in quantum mechanics. Found. Phys. 2005. Vol. 35. No. 10. Pp. 1655-1693.
Kolmolgoroff A.N. Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Springer-Verlag, 1933.