Импульсный туннельный эффект: новые перспективы управления сверхпроводящими устройствами
(Стр. 161-176)
Подробнее об авторах
Рахимов Рустам Хакимович
доктор технических наук; заведующий, лаборатория № 1
Институт материаловедения Академии наук Республики Узбекистан
г. Ташкент, Республика Узбекистан
Институт материаловедения Академии наук Республики Узбекистан
г. Ташкент, Республика Узбекистан
Аннотация:
Статья посвящена исследованию импульсного туннельного эффекта и его новым перспективам в управлении сверхпроводящими устройствами. Рассматривается квантовая природа электрического сопротивления, включая квантовый эффект Холла, квантовое сопротивление Клитцинга и эффект Джозефсона. Особое внимание уделено роли квантовых размерных эффектов в формировании электрического сопротивления наноструктур и молекулярных проводников. Статья освещает новые перспективы использования импульсного туннельного эффекта для управления характеристиками сверхпроводящих устройств.
Образец цитирования:
ОБРАЗЕЦ ЦИТИРОВАНИЯ: Рахимов Р.Х. Импульсный туннельный эффект: новые перспективы управления сверхпроводящими устройствами // Computational Nanotechnology. 2024. Т. 11. № 3. С. 161-176. DOI: 10.33693/2313-223X-2024-11-3-161-176. EDN: QBGGDW
Список литературы:
Рахимов Р.Х., Ермаков В.П. Импульсный туннельный эффект. Особенности взаимодействия с веществом. Эффект наблюдателя // Computational Nanotechnology. 2024. Т. 11. № 2. С. 116–145. DOI: 10.33693/2313- 223X-2024-11-2-116-145. EDN: MWBRQW.
Рахимов Р.Х., Паньков В.В., Саидвалиев Т.С. Исследование влияния импульсного излучения, генерируемого функциональной керамикой на основе принципа ИТЭ, на характеристики системы Cr2O3—SiO2—Fe2O3—CaO—Al2O3—MgO—CuO // Computational Nanotechnology. 2024. Т. 11. № 2. С. 146–157. DOI: 10.33693/2313-223X-2024-11-2-146-157. EDN: MWPEYI.
Рахимов Р.Х., Ермаков В.П. Особенности процесса полимеризации на основе ИТЭ // Computational Nanotechnology. 2024. Т. 11. № 2. С. 158–174. DOI: 10.33693/2313-223X-2024-11-2-158-174. EDN: MXFORZ.
Рахимов Р.Х., Паньков В.В., Ермаков В.П. и др. Импульсный туннельный эффект: результаты испытаний пленочно-керамических композитов // Computational Nanotechnology. 2024. Т. 11. № 2. С. 175–191. DOI: 10.33693/2313-223X-2024-11-2-175-191. EDN: NHSAVQ.
Рахимов Р.Х. Импульсный туннельный эффект: фундаментальные основы и перспективы применения // Computational Nanotechnology. 2024. Т. 11. № 1. С. 193–213. DOI: 10.33693/2313-223X-2024-11-1-193-213. EDN: EWSBUT.
Рахимов Р.Х., Паньков В.В., Ермаков В.П, Махнач Л.В. Производительные методы повышения эффективности протекания промежуточных реакций при синтезе функциональной керамики // Computational Nanotechnology. 2024. Т. 11. № 1. С. 224–234. DOI: 10.33693/2313-223X-2024-11-1-224-234. EDN: FCGMYR.
Рахимов Р.Х., Ермаков В.П. Новые подходы к синтезу функциональных материалов с заданными свойствами под действием концентрированного излучения и импульсного туннельного эффекта // Computational Nanotechnology. 2024. Т. 11. № 1. С. 214–223. DOI: 10.33693/2313-223X-2024-11-1-214-223. EDN: EYKREQ.
Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics // Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. DOI: 10.33693/2313-223X-2023-10-3-26-34. EDN: QZQMCA.
Рахимов Р.Х., Паньков В.В., Ермаков В.П. и др. Исследование свойств функциональной керамики синтезированной модифицированным карбонатным методом // Computational Nanotechnology. 2023. Т. 10. № 3. С. 130–143. DOI: 10.33693/2313-223X-2023-10-3-130-143. EDN: SZDYRZ.
Рахимов Р.Х., Ермаков В.П. Перспективы солнечной энергетики: роль современных гелиотехнологий в производстве водорода // Computational Nanotechnology. 2023. Т. 10. № 3. С. 11–25. DOI: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
Kamihara Y., Watanabe T., Hirano M., Hosono H. High-temperature superconductivity in iron-based materials // Journal of the American Chemical Society. 2008. No. 130 (11). Pp. 3296–3297.
Drozdov A.P., Eremets M.I., Troyan I.A. et al. Superconductivity at 203 K in lanthanum/hydrogen under high pressure // Nature. 2015. No. 525 (7567). Pp. 73–76.
Choi H.J., Roundy D., Sun H. et al. The electron-phonon interaction in MgB2 // Nature. 2002. No. 418 (6899). Pp. 758–760.
Plakida N.M. Electron-phonon coupling and high-Tc superconductivity in cuprates // Physica C: Superconductivity. 2001. No. 364-365. Pp. 334–340.
Reynolds C.A., Serin B., Wright W.H., Nesbitt L.B. Isotopic effect in superconductors // Phys. Rev. 1951. No. 84. P. 691.
Кулеев И.И., Кулеев И.Г., Бахарев С.М., Инюшкин А.В. Влияние дисперсии на фокусировку фононов и анизотропию теплопроводности монокристаллов кремния в режиме граничного рассеяния // Физика твердого тела. 2013. Т. 55. Вып. 7. С. 1441–1450
Свистунов В.М., Белоголовский М.Б., Хачатуров А.И. Электрон-фононное взаимодействие в высокотемпературных сверхпроводниках // УФН. 1993. Т. 163. № 2. С. 61–79.
Iguchi I., Wen Z. Tunnel gap structure and tunneling model of the anisotropic YBaCuO/I/Pb junctions // Physica С. 1991. Vol. 178. No. 1. Pp. 1–10.
Барьяхтар В.Г., Белоголовский М.Б., Свистунов В.М., Хачатуров А.И. Особенности туннелирования в металлооксидную керамику // ДАН АН СССР. 1989. Т. 307. № 4. С. 850–853.
Илюшкин А.В., Талденков Б.З., Флорентьев В.В. Теплопроводность монокристаллов LnBa2Cu3O7 – x // УФН. 1991. Т. 161. № 7. С. 200–204.
Dynes R.C., Sharifi F., Pargellis A. et al. Tunneling spectroscopy in Ва1 – xKxBiO3 // Physica С. 1991. Vol. 185–189. Pp. 234–240.
Tsuda N., Shimada D., Miyakawa N. Phonon mechanism of high Tc superconductivity based on the tunneling study of Bi-based cuprates // Physica С. 1991. Vol. 185–189. Pp. 1903–1904.
Бобров Н.Л. Восстановление функции электрон-фононного взаимодействия в сверхпроводниках с помощью неоднородных микроконтактов и коррекция фона в спектрах Янсона // ЖЭТФ. 2021. Т. 160. Вып. 1 (7). С. 73–87.
Лыков А.Н. О возможности фононного механизма сверхпроводимости в купратных ВТСП // Физика твердого тела. 2022. Т. 64. Вып. 11. С. 1631–1637.
Шнейдер Е.И., Овчинников С.Г. Влияние электрон-фононного взаимодействия на анизотропный сверхпроводящий параметр порядка // Вестник НГУ. Серия: Физика. 2007. Т. 2. Вып. 1.
Gweon G.-H., Sasagawa T., Zhou S.Y. et al. An unusual isotope effect in a hightemperature superconductor // Letters to Nature. 2004. Vol. 430. Pp. 187–190.
Zhou X.Z., Junren Shi., Yoshida T. et al. Multiple bosonic mode coupling in electron self-energy of (La2 − xSrx)CuO4 // Phys. Rev. Lett. 2005. Vol. 95. Pp. 117001–117004.
Овчинников С.Г., Шнейдер Е.И. Эффективный гамильтониан для ВТСП купратов с учетом ЭФВ взаимодействия в режиме сильных корреляций // ЖЭТФ. 2005. Т. 128. С. 974–986.
Шнейдер Е.И., Овчинников С.Г. Фононный и магнитный механизмы спаривания в высокотемпературных сверхпроводниках в режиме сильных корреляций // Письма в ЖЭТФ. 2006. Т. 128. Вып. 5. С. 974–986.
Pintschovius L. Electron-phonon coupling effects explored by inelastic neutron scattering // Phys. Stat. Sol. B. 2005. Vol. 242. Pp. 30–50.
Рахимов Р.Х., Паньков В.В., Саидвалиев Т.С. Исследование влияния импульсного излучения, генерируемого функциональной керамикой на основе принципа ИТЭ, на характеристики системы Cr2O3—SiO2—Fe2O3—CaO—Al2O3—MgO—CuO // Computational Nanotechnology. 2024. Т. 11. № 2. С. 146–157. DOI: 10.33693/2313-223X-2024-11-2-146-157. EDN: MWPEYI.
Рахимов Р.Х., Ермаков В.П. Особенности процесса полимеризации на основе ИТЭ // Computational Nanotechnology. 2024. Т. 11. № 2. С. 158–174. DOI: 10.33693/2313-223X-2024-11-2-158-174. EDN: MXFORZ.
Рахимов Р.Х., Паньков В.В., Ермаков В.П. и др. Импульсный туннельный эффект: результаты испытаний пленочно-керамических композитов // Computational Nanotechnology. 2024. Т. 11. № 2. С. 175–191. DOI: 10.33693/2313-223X-2024-11-2-175-191. EDN: NHSAVQ.
Рахимов Р.Х. Импульсный туннельный эффект: фундаментальные основы и перспективы применения // Computational Nanotechnology. 2024. Т. 11. № 1. С. 193–213. DOI: 10.33693/2313-223X-2024-11-1-193-213. EDN: EWSBUT.
Рахимов Р.Х., Паньков В.В., Ермаков В.П, Махнач Л.В. Производительные методы повышения эффективности протекания промежуточных реакций при синтезе функциональной керамики // Computational Nanotechnology. 2024. Т. 11. № 1. С. 224–234. DOI: 10.33693/2313-223X-2024-11-1-224-234. EDN: FCGMYR.
Рахимов Р.Х., Ермаков В.П. Новые подходы к синтезу функциональных материалов с заданными свойствами под действием концентрированного излучения и импульсного туннельного эффекта // Computational Nanotechnology. 2024. Т. 11. № 1. С. 214–223. DOI: 10.33693/2313-223X-2024-11-1-214-223. EDN: EYKREQ.
Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics // Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. DOI: 10.33693/2313-223X-2023-10-3-26-34. EDN: QZQMCA.
Рахимов Р.Х., Паньков В.В., Ермаков В.П. и др. Исследование свойств функциональной керамики синтезированной модифицированным карбонатным методом // Computational Nanotechnology. 2023. Т. 10. № 3. С. 130–143. DOI: 10.33693/2313-223X-2023-10-3-130-143. EDN: SZDYRZ.
Рахимов Р.Х., Ермаков В.П. Перспективы солнечной энергетики: роль современных гелиотехнологий в производстве водорода // Computational Nanotechnology. 2023. Т. 10. № 3. С. 11–25. DOI: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
Kamihara Y., Watanabe T., Hirano M., Hosono H. High-temperature superconductivity in iron-based materials // Journal of the American Chemical Society. 2008. No. 130 (11). Pp. 3296–3297.
Drozdov A.P., Eremets M.I., Troyan I.A. et al. Superconductivity at 203 K in lanthanum/hydrogen under high pressure // Nature. 2015. No. 525 (7567). Pp. 73–76.
Choi H.J., Roundy D., Sun H. et al. The electron-phonon interaction in MgB2 // Nature. 2002. No. 418 (6899). Pp. 758–760.
Plakida N.M. Electron-phonon coupling and high-Tc superconductivity in cuprates // Physica C: Superconductivity. 2001. No. 364-365. Pp. 334–340.
Reynolds C.A., Serin B., Wright W.H., Nesbitt L.B. Isotopic effect in superconductors // Phys. Rev. 1951. No. 84. P. 691.
Кулеев И.И., Кулеев И.Г., Бахарев С.М., Инюшкин А.В. Влияние дисперсии на фокусировку фононов и анизотропию теплопроводности монокристаллов кремния в режиме граничного рассеяния // Физика твердого тела. 2013. Т. 55. Вып. 7. С. 1441–1450
Свистунов В.М., Белоголовский М.Б., Хачатуров А.И. Электрон-фононное взаимодействие в высокотемпературных сверхпроводниках // УФН. 1993. Т. 163. № 2. С. 61–79.
Iguchi I., Wen Z. Tunnel gap structure and tunneling model of the anisotropic YBaCuO/I/Pb junctions // Physica С. 1991. Vol. 178. No. 1. Pp. 1–10.
Барьяхтар В.Г., Белоголовский М.Б., Свистунов В.М., Хачатуров А.И. Особенности туннелирования в металлооксидную керамику // ДАН АН СССР. 1989. Т. 307. № 4. С. 850–853.
Илюшкин А.В., Талденков Б.З., Флорентьев В.В. Теплопроводность монокристаллов LnBa2Cu3O7 – x // УФН. 1991. Т. 161. № 7. С. 200–204.
Dynes R.C., Sharifi F., Pargellis A. et al. Tunneling spectroscopy in Ва1 – xKxBiO3 // Physica С. 1991. Vol. 185–189. Pp. 234–240.
Tsuda N., Shimada D., Miyakawa N. Phonon mechanism of high Tc superconductivity based on the tunneling study of Bi-based cuprates // Physica С. 1991. Vol. 185–189. Pp. 1903–1904.
Бобров Н.Л. Восстановление функции электрон-фононного взаимодействия в сверхпроводниках с помощью неоднородных микроконтактов и коррекция фона в спектрах Янсона // ЖЭТФ. 2021. Т. 160. Вып. 1 (7). С. 73–87.
Лыков А.Н. О возможности фононного механизма сверхпроводимости в купратных ВТСП // Физика твердого тела. 2022. Т. 64. Вып. 11. С. 1631–1637.
Шнейдер Е.И., Овчинников С.Г. Влияние электрон-фононного взаимодействия на анизотропный сверхпроводящий параметр порядка // Вестник НГУ. Серия: Физика. 2007. Т. 2. Вып. 1.
Gweon G.-H., Sasagawa T., Zhou S.Y. et al. An unusual isotope effect in a hightemperature superconductor // Letters to Nature. 2004. Vol. 430. Pp. 187–190.
Zhou X.Z., Junren Shi., Yoshida T. et al. Multiple bosonic mode coupling in electron self-energy of (La2 − xSrx)CuO4 // Phys. Rev. Lett. 2005. Vol. 95. Pp. 117001–117004.
Овчинников С.Г., Шнейдер Е.И. Эффективный гамильтониан для ВТСП купратов с учетом ЭФВ взаимодействия в режиме сильных корреляций // ЖЭТФ. 2005. Т. 128. С. 974–986.
Шнейдер Е.И., Овчинников С.Г. Фононный и магнитный механизмы спаривания в высокотемпературных сверхпроводниках в режиме сильных корреляций // Письма в ЖЭТФ. 2006. Т. 128. Вып. 5. С. 974–986.
Pintschovius L. Electron-phonon coupling effects explored by inelastic neutron scattering // Phys. Stat. Sol. B. 2005. Vol. 242. Pp. 30–50.
Ключевые слова:
Импульсный туннельный эффект, сверхпроводящие устройства, квантовый эффект Холла, квантовое сопротивление Клитцинга, эффект Джозефсона, квантовые размерные эффекты, наноструктуры, молекулярные проводники.
Статьи по теме
2. НАНОСТРУКТУРИРОВАННЫЕ МАТЕРИАЛЫ Страницы: 25-31 Выпуск №4871
ФОТОЛЮМИНЕСЦЕНЦИЯ ПОРИСТОГО ФОСФИДА ИНДИЯ, ОБУСЛОВЛЕННАЯ КВАНТОВЫМИ ПЕРЕХОДАМИ В ОБЪЕМНО-ОГРАНИЧЕННЫХ СЛОЯХ
пористый фосфид индия
электрохимическое травление
фотолюминесценция
наноструктуры
оксиды
Подробнее
2. НАНОСТРУКТУРИРОВАННЫЕ МАТЕРИАЛЫ Страницы: 35-39 Выпуск №6518
ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ В ЭНЕРГО- И РЕСУРСОСБЕРЕЖЕНИИ
трение
наноструктуры
трущиеся пары
уровень вибрации
расход энергии
Подробнее
Вычислительные системы и их элементы Страницы: 11-33 DOI: 10.33693/2313-223X-2024-11-3-11-33 Выпуск №143798
Потенциал импульсного туннельного эффекта (ИТЭ) для преодоления технических барьеров квантовых компьютеров
квантовые вычисления
квантовые компьютеры
кубиты
квантовые эффекты
суперпозиция
Подробнее
Математическое моделирование, численные методы и комплексы программ Страницы: 98-124 DOI: 10.33693/2313-223X-2024-11-3-98-124 Выпуск №143798
Взаимосвязь и интерпретация эффектов в квантовой механике и классической физике
квантовая механика
вероятностный подход
статистические предсказания
квантовые явления
микрочастицы
Подробнее
Информатика и информационные процессы Страницы: 115-144 DOI: 10.33693/2313-223X-2024-11-2-115-144 Выпуск №119881
Импульсный туннельный эффект Особенности взаимодействия с веществом Эффект наблюдателя
импульсный туннельный эффект
лазеры
CO2-лазер
водород
фотокатализ
Подробнее
Нанотехнологии и наноматериалы Страницы: 103-109 DOI: 10.33693/2313-223X-2023-10-4-103-109 Выпуск №47939
Гелиосушка фруктов и овощей с использованием полиэтилен-керамического композита
функциональная керамика
композит
масса
влага
радиация
Подробнее
Информатика и информационные процессы Страницы: 145-156 DOI: 10.33693/2313-223X-2024-11-2-145-156 Выпуск №119881
Исследование влияния импульсного излучения, генерируемого функциональной керамикой на основе принципа ИТЭ, на характеристики системы Cr2O3–SiO2–Fe2O3–CaO–Al2O3–MgO–CuO
керамика
импульсное излучение
импульсный туннельный эффект
инфракрасный диапазон
механоактивация
Подробнее
Информатика и информационные процессы Страницы: 157-173 DOI: 10.33693/2313-223X-2024-11-2-157-173 Выпуск №119881
Особенности процесса полимеризации на основе ИТЭ
импульсный туннельный эффект
полимеризация
эффективность
физические свойства
инновационные технологии
Подробнее
Информатика и информационные процессы Страницы: 174-190 DOI: 10.33693/2313-223X-2024-11-2-174-190 Выпуск №119881
Импульсный туннельный эффект: результаты испытаний пленочно-керамических композитов
импульсный туннельный эффект
функциональная керамика пленочно-керамические композиты фотокатализаторы
композитные пленки
реакторы
генерация
Подробнее
Нанотехнологии и наноматериалы Страницы: 193-213 DOI: 10.33693/2313-223X-2024-11-1-193-213 Выпуск №95355
Импульсный туннельный эффект: фундаментальные основы и перспективы применения
импульсный туннельный эффект
когерентное излучение
функциональные материалы
сверхпроводимость
наноматериалы
Подробнее