ПРИЛОЖЕНИЕ БЕЗОРБИТАЛЬНОГО ПОДХОДА К МОДЕЛИРОВАНИЮ МНОГОАТОМНЫХ СИСТЕМ С РАЗЛИЧНЫМИ НАПРАВЛЕНИЯМИ МЕЖАТОМНЫХ СВЯЗЕЙ
(Стр. 24-29)

Подробнее об авторах
Заводинский Виктор Григорьевич доктор физикоматематических наук, профессор; ведущий научный сотрудник
Хабаровское отделение Института прикладной математики ДВО РАН
Хабаровск, Российская Федерация Горкуша Ольга Александровна кандидат физикоматематических наук; старший научный сотрудник
Хабаровское отделение Института прикладной математики ДВО РАН
Хабаровск, Российская Федерация
Чтобы читать текст статьи, пожалуйста, зарегистрируйтесь или войдите в систему
Аннотация:
На примере трехатомных кластеров Al3, Si3 и С3 показано, что безорбитальный вариант теории функционала плотности может быть использован для нахождения равновесных конфигураций многоатомных систем как с металлической, так и с ковалентной связью. Получены равновесные межатомные расстояния, энергии связи и углы между связями в хорошем согласии с известными данными.
Образец цитирования:
Заводинский В.Г., Горкуша О.А., (2016), ПРИЛОЖЕНИЕ БЕЗОРБИТАЛЬНОГО ПОДХОДА К МОДЕЛИРОВАНИЮ МНОГОАТОМНЫХ СИСТЕМ С РАЗЛИЧНЫМИ НАПРАВЛЕНИЯМИ МЕЖАТОМНЫХ СВЯЗЕЙ. Computational nanotechnology, 1 => 24-29.
Список литературы:
Wang Y.A., Carter E.A. Orbital-free kinetic-energy density functional theory. In: Progress in Theoretical Chemistry and Physics. Kluwer, Dordrecht. 2000, 117 p.
Huajie Chen, Aihui Zhou. Orbital-Free Density Functional Theory for Molecular Structure Calculations. Numerical Mathematics: Theory, Methods and Applications, 2008, 1, 1-28.
Baojing Zhou, Ligneres V.L., Carter E.A. Improving the orbital-free density functional theory description of covalent materials. Journal Chemical Physics, 2005, 122, 044103-044113.
Hung L., Carter E.A. Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics. Chemical Physics Letters, 2009, 475, 163-170.
Karasiev V.V., Trickey S.B. Issues and challenges in orbital-free density functional calculations. Computational Physics Communications, 2012, 183, 2519-2527.
Karasiev V.V., Chakraborty D., Shukruto O.A., Trickey S.B. Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations. Physical Review B, 88, 161108-161113(R).
Wesolowski T.A. Approximating the kinetic energy functional Ts[ρ]: lessons from four-electron systems. Molecular Physics, 2005, 103, 1165-1167.
Kohn W., Sham J.L. Self-Consistent Equations including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133-A1138.
Hohenbeg H., Kohn W. Inhomogeneous Electron Gas, Physical Review, 1964, 136, B864-B871.
В.Г. Заводинский, О.А. Горкуша. ФТТ, 56, 2253 (2014);
Junchao Xia, Chen Huang, Ilgyou Shin, Carter E.A. Can orbital-free density functional theory simulate molecules? The Journal of Chemical Physics, 2012, 136, 084102(13).
Raghavachari K., Logovinsky V. Structure and bonding in small silicon clusters. Phys. Rev. Lett. 1985, 55, 2853-2856.
Van Orden A., Saykally R.J. Small carbon clusters: spectroscopy, structure, and energetics. Chemical Review, 1998, 98, 2313-2357.
Feng-Chuan Chuang, Wang C.Z., Ho K.H. Structure of neutral aluminum clusters Aln (2≤n≤23): Genetic algorithm tight-binding calculations. Phys. Rev. B, 2006 ,73, 125431(7).
Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Computational Physics Communications, 1999), 119, 67-98.
Perdew J.P., Zunger A. Self-interaction correction to density functional approximation for many-electron systems, Physical Review B, 1981, 23, 5048-5079.
Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method, Physical Review Letters, 1980, 45. 566-569.
Tomanek D., Schluter M.A. Structure and bonding of small semiconductor clusters. Phys. Rev. B, 1987 36, 1208-1217.
Mukhtarov A.P., Normurodov A.B., Sulaymonov N.T., Umarova F.T. Charge States of Bare Silicon Clusters up to Si8 by Non-Conventional Tight-Binding Method. Journal of nano- and electronic physics, 2015, 7, 01012(7).
Nayak S.K., Khanna S.N., Jena P.J. Evolution of bonding in AlnN clusters: A transition from nonmetallic to metallic character. Physical Review B, 1998, 57, 3787-3790.
Matrínez A., Vela A. Stability of charged aluminum clusters. Physical Review B, 1994, 49, 17464(4).
Karton A., Tarnopolsky A., Martin J.M.L. Atomization energies of the carbon clusters Cn (n=2-10) revisited by means of W4 theory as well as density functional, Gn, and CBS methods. International Journal of Interface between Chemistry and Physics, 2009, 107, 977-1003.
Mahdi Afshar, Mahboobeh Babaei, Amir Hossein Kordbacheh. First principles study on structural and magnetic properties of small and pure carbon clusters (Cn, n = 2-12) Journal of Theoretical and Applied Physics, 2014, 8, 103-108.
McCarthy M.C., Thaddeus P. Rotational spectrum and structure of Si3. Physical Review Letters, 2003, 90, 213003(4).
Liu B., Lu Z.Y., Pan B., Wang C.Z., Ho K. M., Shvartsburg A.A., Jarrold M.F. Ionization of medium-sized silicon clusters and the geometries of the cations. Journal of Chemical Physics, 1998, 109, 9401-9409.
Raghavachari K., Rohlfing C.M. Bonding and stabilities of small silicon clusters: A theoretical study of Si7-Si10. Journal of Chemical Physics, 1988, 89, 2219-2234.
V.G. Zavodinsky, O.A. Gorkusha. A practical way to develop the orbital-free density functional calculations. Physical Science International Journal, 2014, 4(6), 880-891;
В.Г. Заводинский, О.А. Горкуша. На пути к моделированию больших наносистем на атомном уровне. Computational nanotechnology, 2014, 1, 11-16;
V.G. Zavodinsky O.A. Gorkusha. A new Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles. Modeling and Numerical Simulation of Material Science, 2015, 5, 39-47.
Ключевые слова:
Моделирование, функционал плотности, безорбитальный подход, тримеры, ковалентные связи.


Статьи по теме

Выпуск №20323
Анализ перспектив применения технологии интернета вещей в электроэнергетической отрасли
интернет вещей предсказательное техническое обслуживание экономическая эффективность окупаемость моделирование
Подробнее
Выпуск №19121
Энергетика и упругие свойства больших нано-объектов: безорбитальный подход на основе теории функционала плотности
безорбитальный подход полноэлектронный потенциал теория функционала плотности моделирование наноматериалы
Подробнее
Выпуск №5291
ВЛИЯНИЕ ДИСЛОКАЦИЙ НА ПРОЧНОСТЬ НАНОСИСТЕМ: МОДЕЛИРОВАНИЕ НА АТОМНОМ УРОВНЕ
моделирование наносистемы дислокации кремний магний
Подробнее
Выпуск №12435
Мысли об оптимизации современной уголовной политики России
уголовная политика моделирование прогнозирование определение долгосрочных и промежуточных целей иерархичность
Подробнее
Выпуск №3497
НА ПУТИ К МОДЕЛИРОВАНИЮ БОЛЬШИХ НАНОСИСТЕМ НА АТОМНОМ УРОВНЕ
моделирование функционал плотности безорбитальный подход димеры
Подробнее
Выпуск №17377
Исследование энергетики углеродных нанотрубок безорбитальным методом в рамках теории функционала плотности
квантовое моделирование теория функционала плотности безорбитальный подход углеродные нанотрубки quantum modeling
Подробнее
Выпуск №15633
ИССЛЕДОВАНИЕ ЗАКОНОМЕРНОСТЕЙ ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ ПОЛЫХ СТАЛЬНЫХ ПРОФИЛЕЙ СЖАТИЕМ
профиль деформация изгиб удельная поглощаемая энергия инструмент
Подробнее
Выпуск №6518
ПРИЛОЖЕНИЕ БЕЗОРБИТАЛЬНОГО ПОДХОДА К МОДЕЛИРОВАНИЮ МНОГОАТОМНЫХ СИСТЕМ С РАЗЛИЧНЫМИ НАПРАВЛЕНИЯМИ МЕЖАТОМНЫХ СВЯЗЕЙ
Моделирование функционал плотности безорбитальный подход тримеры ковалентные связи
Подробнее
Выпуск №4871
КВАНТОВО-МЕХАНИЧЕСКОЕ ИССЛЕДОВАНИЕ РАЗРУШЕНИЯ ПОВЕРХНОСТИ НАНОСИСТЕМ НА ОСНОВЕ КАРБИДА ТИТАНА ПОД ДЕЙСТВИЕМ РАСТЯГИВАЮЩИХ НАПРЯЖЕНИЙ
моделирование трещины поверхность карбид титана
Подробнее
Выпуск №18588
Применение инструментов моделирования в рамках функционирования «умного» нефтехимического производства
«умное» производство нефтехимическое предприятие моделирование BPMN IDEF0
Подробнее