НОВЫЙ ШАГ К МОДЕЛИРОВАНИЮ БОЛЬШИХ НАНОСИСТЕМ, СОДЕРЖАЩИХ АТОМЫ РАЗЛИЧНЫХ ТИПОВ
(Стр. 30-34)

Подробнее об авторах
Заводинский Виктор Григорьевич доктор физико-математических наук, профессор; ведущий научный сотрудник
Хабаровское отделение Института прикладной математики ДВО РАН
г. Хабаровск, Российская Федерация Горкуша Ольга Александровна кандидат физико-математических наук; старший научный сотрудник
Оплатить 390 руб. (Картой) Оплатить 390 руб. (Через QR-код)

Нажимая на кнопку купить вы соглашаетесь с условиями договора оферты

Аннотация:
В данной работе изложена новая версия метода квантово-механического моделирования наносистем, основанного на теории функционала плотности в безорбитальном (без волновых функций) подходе. Безорбитальный подход способен дать возможность моделировать огромные системы (вплоть до миллионов атомов), однако его развитие сдерживается трудностями представления функционала кинетической энергии. Мы предлагаем конструировать функционал кинетической энергии сложной системы из функционалов единичных атомов, умноженных на некие веса, индивидуально задаваемые для каждого типа атомов. На примере димеров SiC, SiAl, AlC, SiO и CO мы демонстрируем возможность нашего подхода получить равновесные межатомные расстояния и энергии диссоциации для систем с атомами различных типов.
Образец цитирования:
Заводинский В.Г., Горкуша О.А., (2016), НОВЫЙ ШАГ К МОДЕЛИРОВАНИЮ БОЛЬШИХ НАНОСИСТЕМ, СОДЕРЖАЩИХ АТОМЫ РАЗЛИЧНЫХ ТИПОВ. Computational nanotechnology, 1 => 30-34.
Список литературы:
Kohn W., Sham J.L. Self-Consistent Equations including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133-A1138.
Hohenbeg H., Kohn W. Inhomogeneous Electron Gas, Physical Review, 1964, 136, B864-B871.
Hung L., Carter E.A. Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics. Chemical Physics Letters, 2009, 475, 163-170.
Wang Y.A., Carter E.A. Orbital-free kinetic-energy density functional theory. In: Progress in Theoretical Chemistry and Physics. Kluwer, Dordrecht. 2000, 117 p.
Huajie Chen, Aihui Zhou. Orbital-Free Density Functional Theory for Molecular Structure Calculations. Numerical Mathematics: Theory, Methods and Applications, 2008, 1, 1-28.
Baojing Zhou, Ligneres V.L., Carter E.A. Improving the orbital-free density functional theory description of covalent materials. Journal Chemical Physics, 2005, 122, 044103-044113.
Karasiev V.V., Trickey S.B. Issues and challenges in orbital-free density functional calculations. Computational Physics Communications, 2012, 183, 2519-2527.
Karasiev V.V., Chakraborty D., Shukruto O.A., Trickey S.B. Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations. Physical Review B, 88, 161108-161113(R).
Wesolowski T.A. Approximating the kinetic energy functional Ts[ρ]: lessons from four-electron systems. Molecular Physics, 2005, 103, 1165-1167.
Junchao Xia, Chen Huang, Ilgyou Shin, Carter E.A. Can orbital-free density functional theory simulate molecules? The Journal of Chemical Physics, 2012, 136, 084102(13).
Lehtomäki, J., Makkonen, I., Caro, M.A., Harju, A. and Lopez-Acevedo O. (2014) Orbital-free density functional theory implementation with the projector augmented wave method. Journal Chemical Physics, 141 234102(7).
Zavodinsky V.G., Gorkusha O.A. Quantum-Mechanical Modeling without Wave Functions. Physics of the Solid States, 2014, 56(11), 2329-2335.
Zavodinsky V.G., Gorkusha O.A. New Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles. Modeling and Numerical Simulation of Material Science, 2015, 5, 39-46.
Zavodinsky V.G., Gorkusha
Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Computational Physics Communications, 1999) ,119, 67-98.
Perdew J.P., Zunger A. Self-interaction correction to density functional approximation for many-electron systems, Physical Review B, 1981, 23, 5048-5079.
Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method, Physical Review Letters, 1980, 45. 566-569.
Raghavachari K., Logovinsky V. Structure and bonding in small silicon clusters. Phys. Rev. Lett. 1985, 55, 2853-2856.
Mukhtarov A.P., Normurodov A.B., Sulaymonov N.T., Umarova F.T. Charge States of Bare Silicon Clusters up to Si8 by Non-Conventional Tight-Binding Method. Journal of nano- and electronic physics, 2015, 7, 01012(7).
Nayak S.K., Khanna S.N., Jena P.J. Evolution of bonding in AlnN clusters: A transition from nonmetallic to metallic character. Physical Review B, 1998, 57, 3787-3790.
Feng-Chuan Chuang, Wang C.Z., Ho K.H. Structure of neutral aluminum clusters Aln (2≤n≤23): Genetic algorithm tight-binding calculations. Phys. Rev. B, 2006 ,73, 125431(7).
Martínez A., Vela A. Stability of charged aluminum clusters. Physical Review B, 1994, 49, 17464(4).
Karton A., Tarnopolsky A., Martin J.M.L. Atomization energies of the carbon clusters Cn (n=2-10) revisited by means of W4 theory as well as density functional, Gn, and CBS methods. International Journal of Interface between Chemistry and Physics, 2009, 107, 977-1003.
Mahdi Afshar, Mahboobeh Babaei, Amir Hossein Kordbacheh. First principles study on structural and magnetic properties of small and pure carbon clusters (Cn, n = 2-12) Journal of Theoretical and Applied Physics, 2014, 8, 103-108.
Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Computational Physics Communications, 1997, 107, 187-205.
Справочник химика под ред. Б.П. Никольского. -М-Л.: Химия, 1982, т.1, стр. 336-341: http://www.chemway.ru/bd_chem/ tbl_mol/w_tbl_r_m_08.php.
Hildenbrand D.L. Dissociation energies of the molecules AlO and Al2O. Chemical Physics Letters 1973, 20, 127-129.
Ключевые слова:
теория функционала плотности, безорбитальный подход, атомы разного типа, функционал кинетической энергии.


Статьи по теме

Разработка функциональных наноматериалов на основе наночастиц и полимерных наноструктур Страницы: 11-17 DOI: 10.33693/2313-223X-2021-8-2-11-17 Выпуск №19121
Энергетика и упругие свойства больших нано-объектов: безорбитальный подход на основе теории функционала плотности
безорбитальный подход полноэлектронный потенциал теория функционала плотности моделирование наноматериалы
Подробнее
Разработка функциональных наноматериалов на основе наночастиц и полимерных наноструктур Страницы: 29-36 DOI: 10.33693/2313-223X-2020-7-3-29-36 Выпуск №17377
Исследование энергетики углеродных нанотрубок безорбитальным методом в рамках теории функционала плотности
квантовое моделирование теория функционала плотности безорбитальный подход углеродные нанотрубки quantum modeling
Подробнее
05.13.18 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ЧИСЛЕННЫЕ МЕТОДЫ И КОМПЛЕКСЫ ПРОГРАММ Страницы: 80-85 DOI: 10.33693/2313-223X-2019-6-3-80-85 Выпуск №15633
ПОЛНОЭЛЕКТРОННЫЙ БЕЗОРБИТАЛЬНЫЙ МЕТОД МОДЕЛИРОВАНИЯ АТОМНЫХ СИСТЕМ: ПЕРВЫЙ ШАГ
квантовое моделирование теория функционала плотности безорбитальный подход кинетический функционал
Подробнее
МОДЕЛИРОВАНИЕ НАНОСИСТЕМ И НАНОЭЛЕКТРОНИКА Страницы: 11-16 Выпуск №3497
НА ПУТИ К МОДЕЛИРОВАНИЮ БОЛЬШИХ НАНОСИСТЕМ НА АТОМНОМ УРОВНЕ
моделирование функционал плотности безорбитальный подход димеры
Подробнее
1. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ЧИСЛЕННЫЕ МЕТОДЫ И КОМПЛЕКСЫ ПРОГРАММ Страницы: 24-29 Выпуск №6518
ПРИЛОЖЕНИЕ БЕЗОРБИТАЛЬНОГО ПОДХОДА К МОДЕЛИРОВАНИЮ МНОГОАТОМНЫХ СИСТЕМ С РАЗЛИЧНЫМИ НАПРАВЛЕНИЯМИ МЕЖАТОМНЫХ СВЯЗЕЙ
Моделирование функционал плотности безорбитальный подход тримеры ковалентные связи
Подробнее
6. ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ Страницы: 107-113 Выпуск №9675
КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СДВИГОВОГО РАЗРУШЕНИЯ В ТИТАНЕ КАК НАЧАЛЬНОЙ СТАДИИ ПРОЦЕССА ТРЕНИЯ ОДНОРОДНЫХ ПОВЕРХНОСТЕЙ
моделирование теория функционала плотности метод псевдопотенциала сдвиговое разрушение титан
Подробнее