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Conference was hold in March-April of 2021. It focused
on computational aspects of quantum mechanics, quantum
computers, and quantum communications. Over the past 10 years,
quantum computer science has become the most important
scientific field that determines progress in micro- and nano-
electronics, biotechnologies, complex chemistry, and information
security. The special role of quantum cryptographic protocols for
protecting information when it is transmitted over communication
lines has been proven by the practice of using such protocols
in many countries. The quantum computer project, which is being
developed in the world’s leading centers, is of fundamental
importance for science as a whole; for example, it should enable
the management of vital processes for both the individual and
society. The quantum computer science tool — computer and
supercomputer computations and modeling of complex processes
at the quantum level — puts the faculty of Computational
mathematics and Cybernetics of MSU — VMK, its mathematicians
and programmers, in a leading position in this direction.

The main goal of the conference is to consolidate the efforts
of scientists working in the quantum field in the different centers
oftheworld, toinform each other about the results of their work and
to discuss future plans. This will increase the efficiency of research
conducted at the VMK faculty and enhance the effectiveness of both
traditional mathematical areas and the use of supercomputing
and other super-productive computing methods in the most
important applied areas. The development of research in quantum
computer science will also give programmers new interesting
and important tasks, for example, this applies to the operating
system of a quantum computer and its fragments. The conference
will strengthen the ties between the different groups in Russia
and abroad, which deal with quantum topics, as well as improve
the teaching of quantum mechanics.

Key topics of the conference:

e quantum computers, computing, quantum operating system,
gates and their implementations;

e quantum cryptography and quantum information theory;

modeling of quantum systems, solving the Schrodinger equa-

tion, direct and inverse problems of scattering of several

particles

e Feynman diagrams;

calculations and modeling of quantum devices: Lasers, photo-

detectors, quantum dots, superconducting elements;

e quantum elements and methods in supercomputing and dis-
tributed computing, the quantum side of Big Data and artificial
intelligence;

e statistical methods of quantum theory, quantum random pro-
cesses;

¢ algebraic methods of quantum computer science;

e quantum aspects of biology and biochemistry;

e quantum methods of management and decision-making;

e interdisciplinary applications of quantum mechanics, quan-
tum economics and quantum politics;

e teaching quantum theory.

The main part of papers presented at the conference are
published in the preprint archive http://arxiv.org, in the quant-
ph section. Articles selected by the program Committee during
the review process are also going to be published in journals
“Nonlinear Phenomena in Complex Systems”, “Computational
Mathematics and Modeling” and “Computational nanotech-
nology”.
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KoHdepeHuusn
«KBaHTOBaA MHpopmaTuka —2021»

KoHdpepeHuma «KBaHToBas MHpopmatuka — 2021», opra-
HW30BaHHaA GaKyAbTETOM BblUMCANTENBHON MaTEMATUKU U KK-
6epHeTUKM MOCKOBCKOTO roCyAapCTBEHHOrO  yHMBEpcUTETa
mm. M.B. JlomoHocoBa, npu nognep>kke MOCKOBCKOro LeHTpa
bYHOAMEHTAaNbHOM M NPUKNAAHOW MaTeMaTMKK, COCTOANACH
B MapTe-anpene 2021 r.
OHa 6bln1a NOCBALLEHA BbIYMCIUTE/IbHBIM aCNeKTaM KBaHTO-
BOM MeXaHWKM, KBAHTOBbIM KOMMbIOTEPAM M KBAHTOBbIM KOM-
MyHUKaumam. KeaHToBasa uHpopmatuka B nocnegHve 10 net
CTaNa BaXHEWMLMM HayYHbIM HamnpasieHUeM, OnpeaenstoLmm
nporpecc B MMUKPO- M HAHO3/MEKTPOHUKe, BUOTEXHONOTUAX,
CNOXKHOW XMMUM, U 3awmTe nHbopmaumm. Ocoban posb KBaH-
TOBbIX KpUNTOrpadnyeckmx NpoToKoA0B A4 3almTbl MHGOpMa-
LMK Npu ee nepegaye no JMHUAM CBA3WM NPOBEPEHA MPAKTUKOM
MCMONb30BaHMA TaKMX MPOTOKO/IOB KaK B HalleW cTpaHe, TaK
1 33 pybexkom. MpoeKT KBAHTOBOrO KOMMNblOTepa, pa3pabaTbiBa-
emblii B BeAyLMX MUPOBbIX LLeHTpax, MMeeT NpUHUmMnuanbHoe
3HayeHue AN HayKK B LLe/IOM; Hanpumep, OH AONKeH AaTb BO3-
MOYHOCTb YNPaB/iEHNA KU3HEHHO Ba*KHbIMW MPOLECCaMM Kak
ON1A OTAENbHOTO YesloBeKa, Tak M Ansa obuiectsa. MHCTpymeHT
KBAHTOBOM MHPOPMATUKM — KOMMbIOTEPHbIE U CYNepKOMMbHO-
TEpHble BbIYMCNEHUA U MOLEANPOBAHME CNOMKHbIX MPOLECCOB
Ha KBAaHTOBOM YypOBHe — BblABUraloT daKynbTeT Bbluncantens-
HOWM MaTEMATUKM U KUBEPHETUKM, 0 MaTEMATUKOB U NPorpam-
MWCTOB, Ha BeAyLLMe NO3MLMN B STOM HamnpaBieHUM.
[naBHasA Uenb KOHEepeHUUN — KOHCONNAAUUA YCUAUIA POC-
CUIACKMX y4YeHblX, paboTatolmx B KBaHTOBOW 061acTu, B3anm-
Hoe uHdopMMpoBaHME O pesynbTaTax paboTbl U obcykaeHue
naaHoB Ha byayliee. 3TO NO3BOAUT MOBbLICUTL IPPEKTUBHOCTb
BeAywmxca B Poccmm HayyHbIX MccnefoBaHUM U yCUAUTb pesyb-
TAaTUBHOCTb KaK TPAAUUMOHHbIX MAaTEMATUYECKMX HAaNpaBAeHU,
TaK U NMPUMEHEeHUA CyNnepKOMMbIOTEPHBIX U UHbIX CBEPXMNPOU3-
BOAMTENbHbIX METOA0B BbIYMCAEHMWI B BaXKHEMLLNX NPUKNALHbIX
obnactax. PassuTne nccnenoBaHuii No KBaHTOBOW MHPOPMATK-
Ke [acT TaKXKe HOBble MHTEPECHbIE W BayKHble 3a434M Nporpam-
MWUCTaM, HanpUmep, 3TO OTHOCUTCA K OMepaLMoHHON cucTeme
KBAHTOBOrO KomMbloTepa M ee ¢parmeHTam. KoHdpepeHuus
cnocobcTBoBana yKpenneHuto cBAasen yyeHblx Poccun, 3aHnma-
IOLLMXCA KBAaHTOBOW TEMATMKOM, @ TaKKe yCOBEPLIEHCTBOBAHMUIO
npenogaBaHUA KBaHTOBON MeXaHUKM.
BakHellumne Tembl KOHbepeHuun:
® KBAHTOBblE KOMMbIOTEPDI, BbIYUCAEHWUA, KBAHTOBasA onepauu-
OHHafA CUCTEeMA, FeiTbl U UX peanmsauuu;

® KBaHTOBas KpunTorpadua 1 KBaHTOBaA Teopma UHPOpMaLUu;

® MOAENUPOBaHWE KBAHTOBbIX CUCTEM, peLUeHWe ypaBHeHWA
LWpeanHrepa, Nnpamoii 1 06paTHOM 33434 PaccCeaHUA HECKOb-
KMX YacTumL,

e delfHMaHOBCKME Anarpammsl;
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® pacyeTbl MU MoaennpoBaHune pPaboTbl KBAaHTOBbLIX NMPUOOPOB:
nasepos, POTOAETEKTOPOB, KBAHTOBbLIX TOYEK, CBEPXNPOBOAA-
LLMX 3N1EMEHTOB;

® KBAHTOBbIE 3/1EMEHTbI M METoAbl B CyNnepKOMMbIOTEPHbIX
M pacnpefeneHHbIX BblYUCNEHUAX, KBAHTOBasA CTOpoHa Big
Data 1 MCKYCCTBEHHOIO MHTENNEKTA;

® CTaTUCTUYECKME METOAbl KBAHTOBOM TEOPUU, KBAHTOBbIE C/Y-
YaliHble NpoLecchl;

* anrebpanyeckme meToabl KBaHTOBOW MHOPMATUKK;

® KBAHTOBbIE acMeKTbl BUONOTUY U BUOXUMUK;

® KBAHTOBblE METOAbI YNPABAEHUA U NPUHATUA PeLleHut;

°* MEXANCUUMIMHAPHbBIE MPUIOXKEHUA KBAHTOBOW MEXaHWUKM,
KBaHTOBas SKOHOMMKa U KBaHTOBas MOJIUTUKA;

® MpenofaBaHNe KBaHTOBOW TEOPUM.

MPOrPAMMHbBINA KOMUTET KOH®EPEHLLUU
«KBAHTOBAA UHPOPMATUKA —2021»

Abnaes .M. (KasaHCKuMIN yHUBEPCUTET).

AsepuH [.B. (Stony Brook University, USA).

bo20aHos HO.U. (PTUAH um. K.A. Bannesa PAH).

By [x#cyHO (YHuBepcuTteT egxaHra Zhejiang, KHP).

Kunun C.A. (MHcTUTYT du3nkm um. b.U. CtenaHosa HaumoHanb-
HOW akagemuu Hayk Benapycum).

Kynuk C.I1. (LleHTp KBaHTOBbIX TEXHOMOMUI GpU3nyeckoro Gpakyb-
Teta MIY).

Macnoe B.[1. (MY, ¢usdak, MUAH).

Moucees C.A. (KazaHCKMI KBaHTOBbIM LeHTp KHUTY-KAN).
Mosnomkoe C.H. (WOTT PAH, BMK MTY).

Oxuzos t0.U. (BMK MTY, ®TUAH um. K.A. Banmesa PAH).
lonoea H.H. (BMK MTIY).

CmupHos A.B. (HUBL,, BMK MTY).

Tpogpumos B.A. (HOkHO-KnTalckuii YHMBepcuTeT TexHonormin —
SCUT, Guangzhou).

XperHukos A.10. (YHuBepcuteT um. Kapna /inHesn, Lseums).
LadnuHeep A. (YHnBepcuteT BeHbl, ABCTpUA).

BonblwMHCTBO paboT, npeacTaBieHHbIX Ha KOHdepeHLumu,
MOXHO HaWTV B apxuee npenpuHToB http://arxiv.org, B pasge-
ne quant-ph ¢ apodunmaumeii QI-2021. M36paHHbIE Nporpamm-
HbIM KOMUTETOM B NPOLLECCe PeLeH3MPOBaHUA CTaTbM NPUHATDI
K ny6avkauum B xKypHanax «Nonlinear Phenomena in Complex
Systems», «Computational Mathematics and Modeling»
n «Computational nanotechology» B cooTBeTcTBUM C nNpasu-
NlamMKn 3TUX KypHanoB. Mporpamma KoHdbepeHuun, abcTpakTbl
cTaTell, a TaKXKe BMAEO03anuUCU CecCMt MOMKHO HalTW, creays
Nno CCblIKaM Ha caiTe BupTyanbHOW KBaHTOBOW nabopatopuu
dakrynbtreta BMK MTY: https://vgl.cs.msu.ru
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Abstract. The Schrodinger equation for bound states depends on a second derivative, that only exists if the solution is continuous,
which is — by itself — contradictory, and cannot be digitally calculated. Photons can be created in-phase by stimulated emission
or annihilated by spontaneous absorption, and break the LEM, more likely at lower frequencies, and even in vacuum. Thus, the number
of particles is not conserved, e.g., in the double-slit experiment, even at low-light intensity. Physical representations of quantum
computation (QC), cannot, thus, follow some customarily assumed aspects of quantum mechanics. This is solved by considering
the Schrédinger equation depending on the curvature, which is expressed exactly as a difference equation, works for any wavelength,
and is variationally solved for natural numbers, representing naturally the quantum energy levels. This leads to accepting both forms
in a universality model. Further, one follows the Bohr model in QC, in a software-defined QC, where GF(2™) can be used with binary
logic to implement in software Bohr’s idea of “many states at once”, without breaking the LEM, in the macro, without necessarily using
special hardware (e.g. quantum annealing), or incurring in decoherence, designed with today’s binary computers, even a cell phone.

Key words: bound states, qubit, qutrit, qudit, tri-state+, information, algebraic, quantum, classical, coherence
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1. INTRODUCTION

In trying to open the “black box” in the quantum state, with
further analysis of the interaction process where the data can
make a wider causal sense, we hope to better understand the lim-
itations about quantum processes. The development of nanoelec-
tronics devices, when nanoprocesses needs to involve quantum
computing, also needs prediction of the structure of matter. But,
if the second derivative is to be included in quantum mechanics
(QM), even though the second derivative only exists if the solution
is continuous, which is — by itself — contradictory [1]. The standard
justification for using derivatives with the wave function W, de-
scribing a discrete behavior on/off without even continuity, is that
W represents an average behavior, in the Bohr interpretation.

But this leaves out many behaviors that are not continu-
ous, and they do not have to be continuous for  to be an aver-
age, even for a continuous function interpolating isolated data
points. A number of contradictions then arise from the use of
infinitesimal analysis in QM, in particular, for the core Schroding-
er equation, the very applicability of which turns out also to be
limited by non-compliance with the conservation of the number
of particles. We offer ways to overcome these contradictions.
In particular, on the basis of replacement of the Schrodinger
equation by an exact difference scheme, which results in a cur-
vature representation, Eq.(4), that does not use continuity and
yet can reproduces all known behaviors. It then reveals a remar-
kable behavior of all energy levels E , that they all scale as

En=an+b+£+0(ij,

n n*
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where n is the quantum number. This allows scaling laws
to be calculated, even for very complicated potentials, such
as for Rydberg levels.

Besides, a continuous solution, even as the average W, can-
not be digitally calculated, so that any digital code must be seen
necessarily as an approximation of some expected (although
mythical) “analog”, continuous code. These two contradictions,
and more, directly impact quantum computing (QC) and has di-
verse manifestations. In particular, in the need for renormaliza-
tion in quantum electrodynamics.

The second derivative is indeed included, e.g., in the ex-
pression of the one-dimensional Schrédinger equation for bound
states in QM [2]:

_deZWEX)z[E—V(X)]W(X)' W
2m  dx

where E is the energy and V(x) is the potential, with the boun-
dary conditions (0) = Y(e=) = 0.

Besides the continuity question (i.e, with ‘lack of continuity’
and ‘code is not continuous’), Eq. (1) brings in the Law of the Ex-
cluded Middle (LEM) as a third contradiction, in ‘breaking
the LEM'.

The LEM is broken in the double-slit experiment — report-
ed in [3], because one can’t say which of the two slits a particle
takes in the experiment. Any attempt to determine this, would
need an interaction with the particle, which would lead to deco-
herence, and consequent loss of interference. This as was con-
cluded in [3], and one must also consider the well-known parti-
cle creation and annihilation. Photons can be created in-phase
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by stimulated emission or annihilated by spontaneous ab-
sorption, more likely at lower frequencies, even in vacuum,
as predicted by Einstein [4; 5]. Thus, which effect must depend
on wavelength, this represents a fourth contradiction — ‘number
of particles is not conserved'.

E.g., in the double-slit experiment, this means that one can-
not say that only one photon exists in the apparatus, contrary
even to [6]. There, in a well-known book, by Dirk Bouwmeester,
Arthur Ekert, and Anton Zeilinger (eds.), they say, in page 1, that
“...the interference pattern can be collected one by one, that is,
by having such a low intensity that only one particle interferes
with itself”.

Why this would break the LEM? Because we can’t say which
of the two slits a particle takes in the experiment. Any attempt
to determine this, would need an interaction with the particle,
which would lead to decoherence, that is, loss of interference.

This reasoning is correct, but relies on having only one par-
ticle in the experiment, which is questionable. One may indeed
have such low intensity as to inject only one particle in the ex-
periment, but the particle can multiply in-phase, indistinguish-
ably, by stimulated emission, or be annihilated, by spontaneous
absorption. This happens more likely at low frequencies, and
can happen in vacuum, as the experiment has at least one wall
with two slits. Thus, even though injected with 1 particle, one
may have 0, 1, 2 or more particles inside. In these cases, the LEM
is also broken, and the situation cannot be avoided. The number
of photons is not conserved. The reference perhaps considers,
naively, that the number of particles is constant. But the LEM is,
nonetheless, broken. It is broken by stimulated emission, which
can produce an extra particle, and broken by default, by not
being able to tell which slit was used. There is no YES or NO
answer possible, for each of the two slits. That the reference
would “forget” about stimulated emission is, nonetheless, in-
correct. The reader is advised, though, that the LEM is indeed
broken anyway.

Now, it becomes more forceful, as breaking the LEM is fur-
ther helped by photon multiplication, producing two or more
photons out of one, in the same phase space, using stimulated
emission. The LEM is broken without any doubleslit, by the very
existence of a third, coherent state, as found by Einstein in 1917
[5; 6]. These two or more “identical” photons, as Einstein found
out in the B coefficients, are more likely in lower frequency. Al-
beit, the external field can be theoretically calculated, as follows.

For light (i.e., a photon) interacting with a double-slit,
the general external state as understood by Eq. (1) is given by .
Here, W is also the coherent superposition of the solutions W,
and W,, where only slit a or slit b are open at the same time:

1
‘Pzﬁ(‘{‘a-ﬁ-‘l’b). (2)

Thus, the behavior of systems described by the Niels Bohr
interpretation of QM [7] does not reproduce classical physics
in the limit of small quantum numbers, although it reproduces
for high quantum numbers, being counter-intuitive [6] to our
usual observed experience, in those small numbers (see
Universality discussion). With the Copenhagen interpretation
[8; 9] in lieu of the Bohr interpretation, this would contradict
also the observation of a particle to have matter or charge, such
as electrons, protons and neutrons, or subatomic, and consider
a spurious special role by one arbitrary, subjective observer
producing an objectively, important to all, solipsistic “collapse”.
This leads us to consider, instead, the model of spatial averages
in the Bohr interpretation, of the quantum level probability
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density function, as representing the particle in classical physics,
although the former four contradictions remain.

The reason the double-slit experiment is counter-intuitive
is because it breaks the LEM.! One cannot split the photon
at the double-slit experiment, notwithstanding Huygens and all
classical considerations, such as the Maxwell equations (ME)
in any form, even when represented by relativistic equations for
the field strength tensor, with B and E using the same units [3].

On these considerations, some computational aspects
of quantum mechanics are to be hopefully improved. This will
lead us to consider an equivalent form of Eq. (1) in an extended
algebra approach, depending on the curvature, and valid for
any frequency, which can be expressed exactly as a first-order
difference equation, and is variationally solved for natural
numbers, representing naturally the quantum energy levels.

While many are considering a far-future and expensive
hardware solution with quantum annealing for QC, this work
on QC sees the noted four contradictions of:
¢ ‘lack of continuity’,

e ‘code is not continuous’,
¢ ‘breaking the LEM’, and
* ‘number of particles is not conserved'.

These are four openings to consider a “new hypothesis”
here, promising a new, coherent basis for QC.

A shorter version was used in the actual presentation, and
is available online at [10].

2. UNIVERSALITY AND INFINITESIMALS

Although QM unquestionably requires discrete values
and breaking the LEM, it has been presumably accurate when
using continuity and LEM to calculate them. But both sides of
an equation representing a physical relationship with discrete
values and no LEM, such as A = B, QM must be kept discrete
and breaking the LEM when the frame of reference changes and
the so-called continuum condition is denied.

To change the reference frame, a well-known theorem
of topology [11], which we call Topological Relationship (TR),
says that a generic one-to-one mapping between spaces
of different dimensionality must be discontinuous, in that
a continuous path in one space must map into a broken
path in the other. The consequences here are multiple, and
this is being explored in [3] as well. Thus, the mathematical
condition seems to imply the physical condition, and continuity
(e.g., including all four contractions, with LEM), denied in one
frame, is to be denied in all.

It would be desirable, therefore, to isolate those aspects
of the current QM theory that involve such continuous quantities
in Eqg. (1), if they exist, and are subject to modification by a more
satisfactory theory, from aspects that involve only discrete
values that do not obey the LEM, and are thus relatively more
trustworthy.

This is a candidate for such a more satisfactory theory of QM.

Historically, however, it is well-known that Eq. (1), can
correctly describe the evolution of bound states of a quantum
physical system for high frequencies, and also work in terms
of quantum, discrete variables, which results would need
to be preserved under the “new hypothesis”. This item argues
that this is possible under a difference in scale as universality,

1 Without photon creation or annihilation, effects more likely at lower
frequencies, as well known. The same interference pattern would be ob-
served with just one particle at a time (e.g., one photon) in the experiment,
so that the photon must interfere with itself in this case.
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and one thus may not be even able to bother with finer details
when only seen at a distance.

If the world is quantum or not, anyway Newton’s calculus
and real numbers lead to infinitesimals and infinities, which were
shown by Brillouin [12] to be non physical. No one can physically
push spacetime arbitrarily close to zero, without limit, or exclude
particle creation or annihilation at low frequencies. Galois
fields and a finite difference approach can be used, to build
an alternative to conventional calculus, without infinitesimals
or the limit concept, so that the conventional approach of [1]
need not to be the only approach to analysis, for physicists,
as we shown in Section 3 on the curvature representation.
The derivative and integral formulas, however, remain the same.
The new finite difference approach can be exactly accurate and
yet there is always a space between integers, which represent
different points in spacetime.

However, while physics shows that nothing is continuous
in nature and, although non physical, one can keep using
infinitesimals, continuity, and irrationals in mathematics, aka
continuity. No one needs to change the traditional treatment
[1] of analysis (i.e., calculus) or limits. This is because of TR,
or Topological Relationship, a well-known theorem in topology
where a generic one-to-one mapping between spaces
of different dimensionality must be discontinuous. Therefore,
a higher dimensional state can embed in a lower-dimensional
state, as well-known in topology, projection, and physics,
although it is subject to TR.

Thus, the universe can have singularities, be quantum
at the core, and yet reality is the consequence of a continuous-
looking universality as discussed in Section 2, where we observe
this through what can only be an ever far-away reference frame
[13; 14], where we observe this through what can only be an ever
far-away reference frame. Universality as the reason for the “black
box” in the quantum state. The details of the microscopic,
even breaking the conservation of the number of particles,
and the LEM, should not be so relevant to the macroscopic
behavior and asserting the LEM, in universality [13; 14]. Can
the same be affecting QC, and that is why we do not see a strong
microscopic effect resulting from a, even though coherent,
microscopic cause?

Different from the interaction with a double-slit, as seen
above, when a photon interacts with matter as in [4], one
needs to consider not just passing or not passing an aperture
in a wall, but further consider the equilibrium of the photon field
with the material in the wall, even in vacuum. In 1916-1917,
Einstein took this latter case and [5; 6] famously argued that,
in addition to the random processes of spontaneous absorption
and spontaneous emission in Eq. (1), a third, new, and coherent
process of stimulated emission must exist microscopically for
physical bodies, as a result providing experimental evidence
for the quantum, allowing photon creation in-phase’ and
annihilation.

Einstein contradicted, thus, the well-known Maxwell
equations, and reproduced exactly the experimental studies
of the thermal, statistical radiation of bodies in quantum
communication, which provided the basis for the later
invention of the laser (light amplification by simulated emission
of radiation).® This is the so-called black-body radiation law,

Stimulated emission, so that a photon still only interacts with a photon
in the same phase space, i.e., ‘identical’.

More than 55 000 laser-related patents have been granted in the United
States.
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macroscopic, and even normal light from a candle, a lamp, or,
a radio wave, have a stimulated emission component. This has
been extended recently, as well-known, with collective effects,
such as superradiance and superabsorption, into 5 states, but
with no essentially new process.

This work’s “new hypothesis” is introduced here, where one
moves from the classical Shannon Boolean analogy of circuits
with relays, valid for the LEM and a formless and classical
“fluid” model of information, with a syntactic expression
called ‘bit’, to a quantum tri-state+, where information is given
by an abstract, algebraic approach with ternary object symmetry
and extensions, modeled by GF(3") and implementable
as GF(2™) [3].

For interaction with matter, we found [4] that Einstein’s
“stimulated emission” provides coherence in universality, and
applies not only to bodies that we must use to transmit and
receive information, but also to how we communicate.

This is based on the topological projection [4] properties,
as GF(3") = GF(2™), for suitable m > n, with GF(3"), GF(2") € Z/Zp,
where p is a prime number, meaning that any three-valued logic
system, breaking thus the LEM, can be represented (i.e, embed)
in a binary logical system, obeying the LEM, although subjec-
ted to TR.

For interactions with matter, we are to apply GF(3")
in behavior, but use GF(2™) [4] for practical implementation,
using binary logic. For the double-slit experiment, and accepting
the natural processes of particle in-phase creation and
annihilation, we model behavior through the binary decision
process in two stages as GF(22). We use the first binary tree,
by taking measurements from the front of the apparatus.
After the double-slit, we take measurements again, from
the immediate side after the apertures, and use a second binary
tree. This makes it possible to use standard binary logic in QC,
and always obey the LEM in the aggregate. Finer cases, with
particle in-phase creation and annihilation, can be analysed by
further binary trees, by using GF(2™).

Also, as known [15-20], the exact representation of Eq. (4)
can be easily, analytically calculated for common and any
potentials, instead of masked in high frequency by WKB [2]
or numerical methods. The scaling law reported [16] would not
had been revealed by WKB or numerical methods.

Although calculus requires continuity for the existence
of derivatives, that is based not only on the four operations
of arithmetic but also on the definition of real numbers. It does
not seem necessary to require continuity, in general, as Cauchy
did in analysis in the field of real numbers. In the field of finite
integers, Z/7Zp, such as in Galois fields, calculus can be defined
exactly, as well-known, while not requiring continuity.

Continuity can be thought here as a collective construct
from universality, not as a result from the use of infinitesimals
(as Cauchy thought) that, are revealed, do not exist, and no such
example can be shown [12; 21]. Code is also not continuous,
and cannot create infinitesimals. Continuity, though, happens
collectively also using Galois fields, finite integers, and code —
through a collective construct also viewed from universality.

NATURE IS QUANTUM IN THE MICRO,
CONTINUOUS IN THE MACRO

Mathematics can reflect nature, as Computer Science
does today with digital only — where binary calculations
belong to the reality we see, not as mythical “approximations”
of an ideal analogue signal that does not exist or can be made.
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However, for more than 50 vyears, as explained first
by Brillouin, nothing was an infinitesimal to the physicist [12]
and one cannot calculate or code it — the topology is digital, not
continuous — thus, continuity has had no topological meaning
(as well as no Cauchy epsilon-deltas) in the physical sense.
Computers have no “continuity chip” — it is all done by binary
code. Even so-called “floating point processors” such as the
old coprocessor are using binary data in calculating mantissas
and exponents. Operations performed by the coprocessor may
be floating point arithmetic, graphics, signal processing, string
processing, cryptography or I/O interfacing with peripheral
devices. Yet, computers can emulate continuous results, and
CDs can play apparently continuous music, any rhythm, better
than analogue. Analogue and continuity are the approximation,
while digital is the true result. Code is the exact result we
see everywhere, while analogue has been, more and more,
deprecated. This is now justified, in universality, but leads one
to consider what may be an artificial renormalization in quantum
field theories [22], and an artificial continuity in general relati-
vity, (GR) all of which should be quantum.

This comment then, opens mathematics and physics
to a new understanding (e.g., opposing Brillouin), as follows:

e one keeps infinitesimals, Cauchy results, and continuity,
even though they are not observable and are not able
to be constructed ever, and proceeds with these hypothesis
as IF true; or,

e one takes the side of the opposite hypothesis, uses
the algebraic approach with only finite integer fields and
extension fields (e.g., Galois fields), that obey all four
mathematical operations (+ — x/), and pursues further its
consequences, such as the spurious continuity requirements
in GR, and in the Schrudinger equation.

The latter is a universality solution we propose, also
to overcome a “sacred cow” feeling on infinitesimals [21]
or even on the double-slit experiment, that are not obeyed
classically (i.e., with infinitesimals, as one divides a volume
to reach the supposed infinitesimal, soon one passes molecules,
atoms, and even particles) nor in quantum physics, (i.e., number
of particles is not conserved; indistinguishable photons can
be created in-phase, or annihilated).

On the particle view of nature, the latter view imposes
natural limits also on the coherence of collective effects not
only on the isolated particle itself, such, as e.g., in the length
oftheparticle. Theissue calls attention to the resulting universality
in the first case, as leading to continuity in the macrocosm,
although no particle is ever continuous, in the microcosm, and
can be observed only through what can ever be a far-away
reference frame. This is in spite of the noted four contradictions
of ’lack of continuity’, ‘code is not continuous’, ‘breaking
the LEM’, and ‘number of particles is not conserved’.

Thus, the concept of universality allows us to use nice, known
formulas such as derivatives in Eq. (1), and also the curvature
method of Eqg. (3), when only discrete values should be used,
without conflict.

3. CURVATURE REPRESENTATION
OF BOUND STATES IN QUANTUM MECHANICS

The second-derivative in Eq. (1) can be represented exactly
as a first-order difference equation, in any function spanned
by linear combinations in the set U:

U={e™, xe ™, x’e™}, 3)

with a suitable a > 0 [16; 19; 20; 23; 24], which already obeys
the known boundary conditions of the Eg. (1). This motivates

16 Computational nanotechnology

us to eliminate the second derivative in Eq. (1), eschewing
the hypothesis of continuity (needed by the derivative
d*P(x)/dx?). Then, Eq. (1) becomes an equivalent first-order
difference equation, normalizing in atomic units,

V(es) =S =0k v ) Julx), @
k

where theindex k=1, 2, 3, ..., K refers to the partition of the co-
ordinate space, as usual, a, is a piece-wise variational parame-
ter, and the boundary conditions are {)(0) = Y(eo) = 0, where oo
represents a large enough, finite, separation in spacetime [19].
Eq. (3) is hereafter called the curvature representation of Eq. (1),
and is discrete.

Based on these potentials and the spectra of all the other
potentials tested at high and low frequencies [20; 23], including
the logarithmic, power-law, and square-root, we expect that with
the curvature representation in Eq. (3) we can exactly represent
Eq. (1), although not in vice-versa. Eq. (3) provides insights not
reachable by Eq. (1), such as the scaling law in [16]. The usual
functional dependence of the eigenvalues is to be obtained
by using the quantum number for a generic potential V(x), and
we expect it to reproduce all the eigenvalues of the usual Eq. (1).

We conjecture that Eq. (3) is an exact discrete representation
of Eqg. (1), although not in vice-versa, and without using any
implicit or explicit continuity. Universality was not important
at the micro level either — it happens at what can only be an ever
far-away reference frame.

4. UNIVERSAL ITY MODEL

In this paper, we hope to use a clear difference in the regimes
of small versus high quantum numbers to improve significantly
upon QC using physical systems or computers, and the QC
interpretation of calculated physics as a consequence. Is code
result to be considered part of reality? How about continuity?
Universality answers both questions.

Inthis regard, we consider what can be called the “universality
model” of QC, in two cases:

1) Without the Heisenberg Principle. Also called the Bohr

model. The quantum particles have well-defined
location and velocity, but we are just not able to know
them precisely, as it happens at what can only be
an ever faraway reference frame. Niels Bohr [7]
described that a quantum particle does not exist in one
state or another, but in all of its possible states at once.*
Here, Eq. (1) or Eq. (3), can then be used to determine
the probability density distributions for a particle
location and velocity.
With the Heisenberg Principle. All quantum particle
states co-exist but, as exemplified by the “Schrodinger’s
cat” mental experiment, only becoming a well-defined
location and velocity when collapsing in the macro, upon
measurement or observation by an observer.

The main difference between the two views in the “uni-
versality models” is collapsing the wave function, which is not
a matter in the Bohr model. Here, we find the first model,
without the Heisenberg Principle, to be more useful.

Experimentally, the behavior of systems described
by the first “universality model”, the Niels Bohr theory of QM,
does not reproduce classical physics in the limit of small
quantum numbers, although it reproduces for high quantum

2

—

4 Not to be confused with the complementarity principle, also formulated
by Bohr.

Vol. 8. No. 3. 2021 ISSN 2313-223X Print

ISSN 2587-9693 Online



ON THE PHYSICAL REPRESENTATION OF QUANTUM SYSTEMS

Gerck E.

numbers, being often counter-intuitive [6] to our usual observed
experience (see Introduction).

This, which may be surprising at first, can be clarified by exam-
ples from complex analysis [25]. The fact that the product of two
negative numbers is a positive number, also seems surprising
at first. In the debit model, where the negative number is a debit,
how to explain that the product of two debits is a credit? However,
in a complex number model, a negative number is a 180° degree
rotation, so the product of two such numbers is a 360° rotation,
positive therefore.

Results begin and end in real number theory, but have a path
through the complex plane, which influences the result, but
remains hidden.

As Edward Titchmarsh [26] observed, \/—_1 isa much simpler

concept than \/5, which is an irrational number, essentially
unknowable.
There are certainly people that regard J2 as something

perfectly obvious, but sneer at J=1 . This is because they think
they can visualize the former as something in physical space, but
not the latter.

This investigation uses the complement: one can not really

visualize \/5, but one can visualize JZ, as a 90° rotation,
and apply it in physics and engineering of real systems. One
could do this using the real-line only, but one will benefit from
the complex plane [25], as shown here.

Complex numbers are not part of the reality that we can
measure, as we can only measure finite integers (e.g., Galois
numbers) and their ratio.

Mutatis mutandis, quantum numbers offer a similar
opportunity in QC. The original “universality model” of QC
is due to Bohr [7], that a quantum particle does not exist
in one state or another, but in all of its possible states
at once. This “universality model” does not need to have
an analogue in real systems, nor in language, nor even in our
mathematics, nor code, nor that one can necessarily realize
it in a physical system, as “quantum annealing”, nor that can
avoid decoherence.

In QM, the energy field must also have a discontinuous,
discrete structure,”> where only the mathematical nature
is evident as a description of reality, while a physical description
of “continuity” is to be denied.

According to Khrennikov [27], the role of a mathematical
apparatus in a description of reality implies that there exist other
pictures of reality where other number fields are used as basic
elements of a mathematical description.

According to Ozhigov [21], the problem of scalability
in quantum computation represents the old question
of the description of the measurements and decoherence in QM.

The problem of scalability in QC is made worse when
using the Copenhagen interpretation [8] in lieu of the Bohr
interpretation [7], whereas the collapsing of the wave function
is not a matter in the Bohr model.

According to Bohr [7], there is no quantum world: “This
is only an abstract physical description. It is wrong to think that
the task of physics is to find out how nature is. Physics concerns
what we can say about nature”. We see this as an universality
view of nature, where different abstract micro descriptions
can correspond to what one can say about the same nature,
macroscopically.

The discontinuity is often described to mean that between two points
there is a nothing — no objects, no atoms, no molecules, no particles,
just nothing, where even the word ‘nothing’ is maybe too much. as basic
elements of a mathematical description.
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This work does not move, though, to a post-Bohr reality,
in trying to open the “black box” of QM. But we support the Bohr
model in a software-defined QC, where GF(2™) can be used with
binary logic to implement Bohr’s “many states at once” model,
without breaking the LEM in the macro, in universality. This is our
“new hypothesis”, closing the former four contradictions, where
information is given by an abstract, algebraic approach with
ternary object symmetry and extensions, modeled by GF(3") and
implementable as GF(2™).

In particular, this is important today, when it is wellknown
that a shadow has fallen over the race to detect a new type
of quantum particle, the Majorana fermion, that could power
quantum computers. The Nature retraction is a setback for
Microsoft’s approach to quantum computing, as researchers
continue to search for the exotic quantum states. While the
evidence of elusive Majorana particle dies — computing hope
lives on, and is now made possible by using tri-state+ in software
with standard binary hardware, while enabling the use of
spintronic methods and other novel approaches using integers.

5. DISCUSSION

In standard QM, the Schrédinger Equation for bound states
is well-known. Eq. (1) is one of only a few solvable models in QM,
and shares many qualitative features with physically important
models, e.g., tuning of quantum-well lasers by long wavelength
radiation, and in the scaling of magnetic fields using Rydberg
atoms.

We showed that the double-slit experiment is often wrongly
seen, including in cited references. Using low light fields
so as to consider only one photon in the apparatus at a time,
because only one photon came in, is not valid since the number
of particles is not conserved, which becomes more important
at lower frequencies. We formulate here a consistent QM
framework using universality, albeit without any continuity
hypothesis. This was clarified by examples in complex analysis.

We showed that it is desirable, therefore, to isolate those
aspects of the current QM theory that involve continuous
quantities, and are subject to modification by a more satisfactory
theory, from aspects that involve only discrete values and are
thus relatively more stable, and trustworthy.

This framework reduces to an equivalence of Eq. (1), without
using second derivatives, which eschews continuity, and was
validated in specifically four major potential models: harmonic,
Coulomb, linear, and Rydberg states, at any frequency.

One cannot split the photon at the double-slit experiment,
Huygens and all considerations. It would not be one particle
anymore. This is not just semantics, this is the semantics, and
the ME cannot explain continuity or the coherence term either.
Although coherence gives origin to the laser, and stimulated
emission. Everything has a stimulated emission component, with
in-phase particle creation, even the light from an ordinary candle.
But the ME fail to express the stimulated emission component.
There are other well-known examples, like diamagnetism and
superconductivity, which might seem at first disturbing, where
the ME fails but QM explains. However, keeping the ME and
Huygens’ principle are right and valuable to Physics in universality,
in the macro, as considered here. But one cannot use the macro
to explain the micro, while the reverse seems possible. As
we provided with the “new hypothesis”, so we can support
the LEM, the ME, and the Huygens’ principle, all in the macro,
and doing away with the four contradictions. Information,
in universality, is given by an abstract, algebraic approach with
ternary object symmetry and extensions, modeled by GF(3")
in the micro and implementable as GF(2™) in the macro.
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One can also use universality to support the Bohr model
of QC in the micro, with the photon as a particle in the micro,
breaking the LEM with no conservation of the number
of particles, in a software-defined QC. Here, GF(2") can be used
with binary logic to implement “many states at once” in the field
7./ Zp, without breaking the LEM in the macro.

This should all be possible without necessarily using special
hardware (e.g. quantum annealing), or incurring in decoherence
at all, and wholly designed in software, with today’s binary
computers, even with a cell phone. This should provide not only
exceptional speed, but also much needed cybersecurity, and
a fresh approach with wide new opportunities for anyone.
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AHHOTaumA. Mbl HauMHaem ¢ 06CyKAeHUA OLWMBOYHOTO NPUMEHEHMA KAacCUYeCKo Teopun BeposTHOCTeN DeiHmaHOM B ero
aHanuse uHTepdepeHLMOHHOro 3KCNepUMeHTa (cneays KpUTUYECKol aprymeHTaumnm KynmaHa, banneHTnHa 1 aBTopa 3ToW CTaTby).
OcHoBoW BbiBoga PeiHMaHa 0 HEBO3MOMXKHOCTU MPUMEHUTb KACCMYECKOEe BEPOSATHOCTHOE OnucaHue ans uHTepdepeHLMOoHHOro
3KCMNEPUMEHTA ABAETCA TPAKTOBKA YC/IOBHbIX BEPOATHOCTEM, COOTBETCTBYHOLLMX PA3/IUYHBIM KCNIEPUMEHTA/IbHbIM KOHTEKCTaM, Kak
6e3yC/I0BHbIX («abCONOTHBIX») BEPOATHOCTEN. 3aTeM Mbl MEPEXOAMM K HEpaBeHCTBaM Tuna benna. benn npumeHan Knaccuyeckyro
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TEOPUIO BEPOATHOCTEN TaKMUM e 06pa3om, Kak n ®eliHMaH, 1, Kak U CNefoBaio OXUAATb, OH TaKKe MOyYua YTBEPKAEHNE O He-
BO3MOHOCTU ee NpumeHeHus. B otanume ot deliHmaHa, oH chopmyInpoBan cBOE YyTBEPKAEHNE HE B BEPOATHOCTHbLIX TEPMUHAX,
a anennvpya K HeNOKaNbHOCTWU. 3Ty 3aMeTKYy MOXHO pacCMaTpmBaTb KaK 4acTb MOMbITOK aBTOpa M36aBUTbCA OT HE/I0Ka/IbHOCTU

B KBAaHTOBOM pU3MKe.

Kniouesble cnosa: HepaBeHCTBO benna, MHTepd)epeHLIMOHHbIe SKCNepUMeHTbI, d)el‘lemaH, KBaHTOBaA ¢M3MKa

BnaropgapHocTtu. PaboTta caenaHa npu puHaHcoBOM noaaepkke MuHobpHayku PP B pamkax nporpammbl MatemaTtnyeckoro
LeHTpa pyHOAAMEHTANbHOW M NPUKAALHOM MaTeMaTuKu no gorosopy Ne 075-15-2019-1621.

CCbI/TIKA HA CTATbHO: XpeHHuKoB A. HepaBeHcTBO benna n nHtepdepeHuUMoHHbIe SKCNEePUMEHTbI: OWNOKK Benna n deliH-
MaHa B NpUMMeHeHUM Knaccuyeckoi seposaTHocty // Computational nanotechnology. 2021. T. 8. Ne 3. C. 19-22. DOL:

10.33693/2313-223X-2021-8-3-19-22

1. INTRODUCTION

Nowadays quantum nonlocality which was highlighted
by Bell [1] (see also, e.g., [2-6]) is the basic component of modern
quantum physics (in contrast to “good old quantum physics”
of Planck, Einstein, Bohr, Heisenberg, Pauli, Fock, Landau,
Blohintzev etc.). However, this nonlocality is apparent and
appeal to it in the foundational discussions is really misleading.

Since 1990-s, | tried to get rid off nonlocality from quantum
physics. Initially the purely probabilistic reasoning was used —
to show that Bell misapplied of the classical probability theory
(CP) in his derivation of the famous inequality (e.g., [7-9]; see also
Kupczynski [10]). Recently | directly appealed to the formalism
of quantum theory by coupling the Bell type inequalities with
incompatibility of quantum observables [11-15] (see also
Boughn [16]).

This paper is coupled to my previous works on CP-mis-
application in Bell’s argumentation, especially to recent papers
[17; 18], where the role of conditional probability (defined
classically with the Bayes formula) was highlighted. The starting
point is the critique of Feynman’s probabilistic analysis of the two
slit experiment [19; 20]. Feynman tried to apply CP to model
the experimental output (as well as the prediction by quantum
theory) of the two slit experiment. However, he misapplied CP
by treating conditional probabilities corresponding to variety
of experimental contexts as unconditional so to say absolute
probabilities. This led him to the conclusion on incompatibility
of CP with quantum theory and experiment . This problem
in Feynman’s probabilistic reasoning is well known for experts
(see e.g. Koopman [21], Ballentine [22], and Khrennikov
[7; 9; 23]) and this is the good time to recall about it.

Later Feynman-like reasoning was used by Bell. We ana-
lyze parallelism of Feynman and Bell reasoning generating
the apparent contradiction between CP and quantum physics.
We point that, in contrast to Feynman, Bell overshadowed this
conclusion by nonlocality issue.

2. CLASSICAL PROBABILITY THEORY

CP was mathematically formalized by Kolmogorov (1933)
[24]. This is the calculus of probability measures, non-negative
weight P(A) is assigned to any event A; here 0 < P(A) < 1.

The main property of CP is its additivity: if two events A,
A, are disjoint, then the probability of disjunction of these events
equals to the sum of probabilities:

P(A,VA,)=P(A)+P(A,). (1)
To make theory mathematically interesting, condition
of additivity is extended to countable-additivity.
20 Computational nanotechnology

By using Bayes’ formula
P(A|C)=P(AAC)/P(C),

there is introduced the conditional probability P(A|C):
the probability that event A would happen under the condition
that event C was happened. We are interested in the situation
that event Cis selection of a complex of experimental conditions,
context C. The conditional probability

A— P_(A) = P(A|C)
is also a probability measure; hence it is also additive:
P(A,VA,|C)=P(A,|C)+P(A,|C), (2)

for disjoint events.

Consider now a random variable which represents some
observable O, then, for each value a, and any two disjoint events
C,and C,, we have, forevent C,,=C, V C,,

P((O=a)nC P((O=a)AC)+P((O=0a)AC,). (3)

12) =
However, generally

P((0=alC,)=P((0=0a|C,VC,)#

w7 (@
#P((0O=al|C)+P(O=qalC,).

So, the calculus of conditional probabilities differs from
calculus of “absolute probabilities”.

3. PROBABILISTIC ANALYSIS
OF THE TWO SLIT EXPERIMENT:
FEYNMAN VERSUS KOOPMAN,
BALLENTINE, KHRENNIKOV

Here we follow Ballentine [22] (see also Koopman [21] and
Khrennikov [7; 9; 23]). The two slit experiment can be described
as follows. There is a source, a screen with two slits (labeled
s, and 52) in it, and a detector. The detector can be moved
to measure the particle count rate at various positions. In this
way, an experiment can measure the probability of a particle
passing through the slit system and arriving at the point, x.
Consider the experimental context C, such that only slit s,
is open; the probability of detection at point x is denoted by P,.
(Point x is fixed, so we omit it form notation.) Consider also
another experimental context C, such that only slit s, is open;
the probability of detection at point x is denoted by P,. Finally,
consider the experimental context C,, such that both slits are
open, the probability of detection is P,,.

We note that passage of a particle through slit s, and passage
through slit s, are certainly exclusive events. Hence events
of passing through C, and C, are disjoint and event C,, of passing
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either through C, or C,, when both slits are open, is disjunction
of these events.

Hence, one might expect (as Feynman did [19; 20]) from
additivity of probability (1) and concretely from (3), that P,
should be equal to P, + P,. But, as is well known, the experiment
statistical data shows that this is not true. Hence, it might
be concluded that of probability theory does not hold in quantum
mechanics.

Ballentine pointed out [22]: “In fact, the above argument
draws its radical conclusion from an incorrect application
of probability theory.” He had in mind that Feynman misleadingly
appealed to the formula (1), instead of (4). To make this issue
clearer, we introduce the observable O = O, representing
the clicks of a detector located at the point x and yielding
the values 0 (no click) and 1 (click). In this notation, P,= P(O = +1)
and1-P,=P(0=0),aswellasP,=P,(0=+1),1-P =P ,(0=0).
Feynman'’s probability fallacy can be written as

P,(0=0a)#P(0=a)+P,(0O=a), a=0,1. (5)
But, in the CP-framework there is no reason to expect that

P(O=alC P(O=alC)+P,(0=0alC), a=01.  (6)

) =

4. FEYNMAN-LIKE REASONING OF BELL

The Bell experiment can be described as follows. There
is a source of pairs of particles and two polarization beam split-
ters (PBSs) with orientations 8 = (6,, 6,); each PBS is coupled
to a pair of detectors, D,(%), Dy(%). Pairing of detector’s outputs
for Alice and Bob can be represented as observable O taking vec-
tor-values (a, B), where a, § = £1. Now to create the CHSH-com-
bination of correlations, experimenter has to consider four ex-
perimental contexts, corresponding to selection of two Alice’s
angles GAl, GAZ and two Bob’s angles 931, 952. We denote the cor-
responding contexts as CU., i,j=1, 2. Then correlations are com-
bined of probabilities P(O = (a, B)|C,,)~ We have

CHsH= Y o,([P(0=(+1, +1)C,;)+P(0=(-1, ~1)C, )]~

;[P,(O:(+1, -1)c,,)+P(0=(-1, +1)c,,)]), 7

where just one of o; equals —1, others equal +1. This consistent
context-referring of probabilities prevents derivation of the CHSH
inequality,

|CHSH| < 2. (8)

Therefore it is not surprising that it is violated for
the experimental data.

In fact, this is the same probability fallacy — mixing of con-
ditional and unconditional probabilities. To derive (8), one has
to consider unconditional probabilities and the corresponding
CHSH-combination of correlations.

5. CONCLUDING REMARKS

The violation of the Bell inequality is the hottest topic
of the modern foundational debates. They are characterized
by the diversity of the mutually contradicting interpretations.
In this paper | presented the following interpretation:

Bell as well as Feynman “simply” confused conditional and
unconditional probabilities. In this way, they found that CP
(and hence CRassical physics which is based on CP) contradicts
to quantum theory. In contrast to Feynman, Bell did not formalize
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his conclusion in the purely probabilistic terms. This led him
to coupling the purely probabilistic interplay between conditional
and unconditional probabilities to the issue of nonlocality.

In short, this interpretation can be formulated as follows:

In the framework of multi-contextual experiment (as the Bell
type experiments: 4 different contexts for the CHSH test),
generally there is no Bell inequality, so there is nothing to violate.

Hence, Bell’s appealing to quantum nonlocality is misleading.
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AHHOTaumA. XopoLlo M3BecTHble GepMUOHHbIe KybuTbl (6e3 cnnHa) moryT notTpeboBaTb 601ee TOHKOrO PacCMOTPEHUA MO CPaB-
HEeHMIo ¢ 06bIYHBIMM depMmUoHamMu (co cnMHoMm). MprMHUMas BO BHUMaHME MOZENb C I0KaNbHbIMKU GepMMUOHHBIMU MOAamMU, HeobXxo-
AVMO OTMETUTb, YTO GOPMAbHO TONbKO «3aHATLIE» COCTOAHMUA | 1) MOTYT NOAYMHATLCA NPUHLMMY aHTUCUMMETPMU MO OTHOLIEHUIO
K NepectaHOBKaMm, HO 3TO He OTHOCUTCS K «BaKyyMHbIM» cocTosiHuAM |0). BBefeHMe nepecTaHOBOYHbIX COOTHOLWEHUI AN TaKuX
bepMUOHHbIX KyBUTOB, MPOUHAEKCUPOBAHHBIX 3aHUMAEMbIMU UMK MO3ULUAMU, MOXKET BbI3BaTb ONpeaeNeHHble BONPOChl B CBA3M
C TaK Ha3blBaeMbIMW NPUHLMNAMK CynepoTbopa. HeCMOTPA Ha 3TO, BO3MOMKHO BBECTU COMNIAaCOBaHHYHO anrebpanyeckyto KOHCTPYK-
LMIO TaKMUX NPaBWUA, NPeACcTaBNeHHYO B laHHOW paboTe. PaccMOTPEHHbIE METOAbI UMEHT ONpeAeNEHHYIO aHANOTUIO C KOHCTPYKLMeN
Cynep-npocTPaHCTB, HO NPU 3ToM 06134aK0T HEKOTOPLIMM OTIMYUAMM OT CTaHAAPTHBIX ONpeaesieHnit CynepcMMMeTpUM MHOTAA UC-
noJsib3yembix B 0606LLEeHHbIX MOAeNAX KybuTos.
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1. INTRODUCTION

Analogues of fermionic creation and annihilation (ladder)
operators were suggested by Richard Feynman for description
of quantum computers already in the very first works [1; 2].
However, Jordan-Wigner transformation [3] is necessary
to make such operators anticommutting for different qubits.
Such approach was used later in so-called fermionic quantum
computation [4].

Representation of fermionic ladder operators in such
a way formally requires some consequent indexing (order) for
description of Jordan—Wigner transformation. The order does
not manifest itself directly in algebraic properties of ladder
operators, but transformations of states formally depend
on such indexes in rather nonlocal way.

States of physical bosons and fermions can be described
in natural way by symmetric and antisymmetric tensors
respectively, but fermionic quantum computation is rather
relevant with more subtle exchange behavior of some quasi-
particles.

Formally, qubits in state |0) corresponds to ‘empty modes’
and only qubits in state |1) treated as ‘occupied modes’ could
be relevant to fermionic exchange principle for qubits marked
by some indexes. Consistent mathematical model of such ‘super-
indexed’ states is suggested in presented work.

More detailed description of such states is introduced
in Sec. 2.1 together with formal definition of signed exchange
rule and ‘super-indexed’ qubits denoted further as S-qubits.
The different kinds of operators acting on S-qubits are
constructed in Sec. 2.2.

Algebraic models of S-qubits are discussed in Sec. 3.
The 'non-trivial’ non-commutative part of such model is similar
with exterior algebra recollected in Sec. 3.1. However, ‘trivial’
commutative elements could not be naturally presented in such
a way and more complete model is suggested in Sec. 3.2.
The Clifford algebras initially used in Sec. 2.2 for applications
to gates and operators become the basic tools here. The S-qubits
are introduced as minimal left ideals of the Cliford algebras.
Finally, some comparison with possible alternative models
of qubits related with super-spaces are outlined in Sec. 3.3.

2. SUPER-INDEXED QUBITS
2.1. STATES

Let us introduce special notation for qubits marked by some
set of indexes / with basic states denoted as

A G>Ab> _A
wlv)

All indexes in the sequence a, b, .. must be different.
The J can be associated with some nodes in multi-dimensional
lattices, more general graphs or other configurations without
natural ordering. Thus, the qubits in Eq. (1) may be rearranged
in different ways.

An idea about basic states of qubits as ‘occupation numbers’
of anticommuting ‘local fermionic modes’ (LFM) [4] can
be formalized by introduction of equivalence relation between

elements Eq. (1) with different order of the indexes defined for
any neighboring pair by signed exchange rule

a b
W, v, ...

) ab .3 wv, .oefo 1) (1)

ollor=lo)a) [aNn)=[lg) [Dl2)=—1)l5)-
i.e.

A:L>A$>:(—1)HVA€>AEL>; Vazbel; y, ve{O, 1}. (2)
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Due to such rules terms TO} with ‘attached’ indexes can be ex-
changed (‘commute’) with any state NJ) = OLTO) + BTl), but two
Tl) require change of the sign for such a swap (‘anti-commute’).
For standard notation and qubits without special indexes the ex-
change rule could be implemented by signed swap operator

1 00 O

§+ _ 001 0 3)
~1/0 1 0 O
0 00 -1

States Eq. (1) with equivalence relation Eq. (2) define basis
of some linear space S denoted here as ‘super-indexed’ qubits
or S-qubits.

The equivalence relation Eq. (2) can be extended on arbitrary
permutation 1. Such operator is denoted further ft, and notation
Tt is reserved for usual permutation. The construction of ft, does
not depend on decomposition of 1t on adjacent transposi_tions,
i.e., swaps of S-qubits considered above. Such consistency
becomes more natural from algebraic models below in Sec. 3 and
‘physical’ interpretation with LFM.

It can be also proved for arbitrary state by direct check
for the basis. Let us consider for a given basic state different
sequences of transpositions produced the same permutation.
It is necessary to show that the sign does not depend
on the decomposition of the permutation into the sequence.
Let us consider restriction (m,) of permutation on subset
of indexes corresponding to S-qubits with unit value. For
the only nontrivial case the restriction of swap on such subset
corresponds to exchange of two units with change of sign.
So, for any decomposition the basic vector may change the sign
only if the permutation m, is odd. Thus, ft, is the same for
any decomposition of it on transpositions defined by signed
exchange rule Eq. (2).

The relation $, can be considered as a formalization of swap
with two LFM denoted as ‘<’ in [4]. It could be expressed
as composition of usual exchange of qubits ‘-’ and ‘swap
defect’ operator [4]

100 0
, |01 0 0
D= (4)
0010
000 -1

Perhaps, the term ‘fermionic qubits’ might be not very
justified for the model considered here, because the property
Eqg. (2) would correspond to fermion for Tl) (‘occupied, n =1)
and boson for TO> (‘empty, n=0).

Thus, S-qubits could be considered as quasi-particles
(“fermisons’) with combined statistics, because exchange rule
instead of (1) multiplier for bosons or fermions should use swap

defect operator
- > b>A . >\
\} o/\v/, (5)

where a formal representation D = (-1)%™ is used, where f,and
fi, are analogues of occupation number operators defined for
usual qubit as

A

([[’)> s (1) (

A ~ (0 O
nlvy=vlv), velo, 1}, n= . 6
0.1, i . ©
The result of a swap Eq. (5) is defined in simple ‘product’
form Eq. (2) for the basis, but for arbitrary states the expressions
are less trivial.
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The S-qubit also could be compared with an element of super
vector space, but due to some subtleties outlined in Sec. 3.3 such
approach should be discussed elsewhere.

The scalar product of S-qubits states can be naturally defined
for the equivalent sequences of indexes S in both (‘bra’ and ‘ket’)
parts

SA S
<‘P‘<1>>:<‘P\<I)>. (7)
The definition Eq. (7) does not depend on a sequence S.
Indeed, let us consider permutations of indexes 1: S+ S'. For
the basic states a permutation may only introduce (+1) multiplier
and the scalar product Eq. (7) does not change. It can be also
checked directly for arbitrary states

<5'As
‘{IV

q>"> :<‘{’

A

q>>:<\1/\q>>=<\if (i>>. (8)

Aa
T, Ty

2.2. OPERATORS

Description of quantum gates with annihilation and creation
(‘ladder’) operators was initially suggested by R. Feynman [1; 2].
However, despite of formal resemblance with Pauli exclusion
principle for fermions

@'l0y=11); dl1)=10)y d|0y=d"|1)=0, (8a)

they do not satisfy canonical anticommutation relation (CAR)
for different qubits. Sometimes, usual qubits are compared
with so-called ‘hardcore’ bosons, but it is not discussed here.
It is considered instead, how ladder operators with CAR can
be introduced for S-qubits, see Eq. (14) below.

The creation operator u; can be defined for basic states
taking into account exchange rule Eq. (2) of S-qubits

T TN BT

where L and R correspond to arbitrary sequences before and
after index ‘a’ respectively. The conjugated annihilation operator
a, = (aj,)+ in simpler case with index ‘@’ in the first position can
be written

. > A

1,.)=

A sign for application of operator a, to arbitrary position
should be found using rearrangement of indexes together with
signed exchange rule Eq. (2).

Let us denote *_ sign derived from Eq. (2) for expressions
such as

a

16, =0, 0 ..). (10)

a L R
1 .., > (11)

where +_ = (=1)* with #L = 5, _ n, is number of units in sequence
L of positions before ‘a’. for simplicity L and R are omitted further.
Finally, Egs. (9, 10) can be rewritten

A . A .
v Lo, agle, 1, ./=0;

v L) =4 |

For consequentindexesa=0,..., m—1Eq.(12)isinagreement
with usual Jordan—Wigner transformation [3; 4], i.e.,

(12a)

,6,.). (12b)

a-1
n,
agng, s Ny_1, 1,0,,4, ...>:(—1)g5 )

Moy wee s Mo_yy 0, Mg, o)

au‘no, e N1, 0,04, ...>:0, (13a)
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and a; is Hermitian conjugation

a-1
Ny
Ny ooy Ng_1, 0,05, 4, ...>:(—1)k:D

aa

Ny ey Ng_1s 1, Ngin, >

a, (13b)

Ny ey Ngvy 1, Nygin, ...>:0.

The a, and a; defined in such a way satisfy canonical
anticommutation

ot . Ty _

{a,a,}t={a,,a,}=0; {a,a,}=6,1 (14)

Let us now introduce Clifford algebra C&(2m) with 2m
generators using operators Eq. (13)

T . o t
e,=Ha,+at; e =a -a, (15)

Operators of so-called Majorana fermionic modes coincides
with Eq. (15) up to imaginary unit multiplier [4].

With earlier definitions of annihilation and creation operators
it can be expressed for basis as

A A
a
=t i, 1, ), eyl

where ¥=—(+ ).

For consequent indexes j = 0, ..., m — 1 the Eq. (16) again
correspond to Jordan—-Wigner formalism with definition
of complex Clifford algebra C&(2m, C) by tensor product of Pauli
matrices [3; 5]

¢, =i0°® 05 ®c" ®1Q--B1;
ge.-Bc, 18- -3
J m—j-1
» A (17)
¢ =ic’®- 85’ R’ Q1R ®1.
— —

i m-j-1

However, Eq. (17) directly introduces order of indexes
unlike more abstract definitions of operators such as Eq. (12)
and Eq. (16) respecting structure of S-qubits without necessity
of predefined order.

The linear combinations of all possible products with
operators ¢, ¢ (or a, a;) for given set J with m, indexes
generate Clifford algebra C€(2mj, C) with dimension 2°™. Thus,
an arbitrary linear operator on space S can be represented
in such a way, but unitarity should be also taken into account for
construction of quantum gates on S-qubits.

An alternative notation ¢, = ¢/, a’ € J' ~ J unifying two
sets of generators from Eq. (15) into the single collection with
doubled set of indexes 23 =T U J" is also used further for brevity.
Definition of Clifford algebra C€(2m,, C) can be written with such
asetas

{e, e, }=—20,1, a,be27. (18)
and conjugation of elements as
el=—¢, ae2l. (19)

The elements Eq. (15) generate C&(2m,, C) isomorphic with
whole algebra of 2" x 2™ complex matrices. The unitary gates
may be expressed as exponents of Hermitian elements with pure
imaginary multipliers discussed below.

Let us consider for some sequence L with / indexes from 2J
a product of / generators

=¢ ..¢; d,..,0¢€27. (20)

[ a;

Computational nanotechnology 25



KBAHTOBbIE CTPYKTYPbl U KBAHTOBOE MOAE/INPOBAHME

QUANTUM AND MOLECULAR COMPUTING AND QUANTUM SIMULATIONS

Linear subspaces €8 is introduced as a span of such
products, ¢, € C&".. The notation C€°and C8' is reserved here
for standard decomposition of C as Z,-graded algebra with two
subspaces corresponding to linear span of all possible products
with even and odd / respectively [10]

C8(n) = CR%(n) ® C&Y(n). (21)
The square of element ¢, can be expressed as

¢=(-1%; ¢ _10+1)

mod?2. (22)
All such elements are unitary with respect to conjugation
operation [5]
¢, =(=1)%; e =1. (23)
The construction of Hermitian basis is also straight forward
(i%e) =(=)¥e, = (=% (~1)%¢, =i%e,. (24)

An exponential representation of unitary operators is simply
derived from Eq. (24) for arbitrary compositions of basic
elements, e.g., for b, e ce!

u(t)=exp(-yht), y=i-i®=i"", 1eR. (25)

Due to property ¢,, , = G, multipliers can be given in the table,

Imod 4 0 1 2 3

S 0 1 1 0 (26)

-, —i 1 1 —i

Expression of unitary group U(2™) using families of quantum
gates can be derived using approach with exponents due
to correspondence between Lie algebras and Lie groups.
The method initially was suggested for construction of universal
set of quantum gates [6; 7; 8]. Clifford algebra C&(2m) with Lie
bracket operation defined as a standard commutator

[a, b] =ab—ba (27)

can be used for representation of Lie algebra of special unitary
group su(2™) and group SU(2™) can be expressed as exponents
of elements from C€(2m).

In the exponential representation analogue of one-gates for
S-qubits with / =1, 2 canbeexpressedas

u, = exp (hlej + hzej’+ h3ej ej.’), h,, hy,hyeR. (28)
It can be also rewritten

U= o+ q,e+ Que/+ quee/; G +q3+a;+q;=1,
(29)
Gy 91 9, 93 € R

Analogue of two-gates for S-qubits with indexes j, k € J can
be declared by analogue exponents with linear combination
of different products including ¢, ej’, e e,; with coefficients are
either real (/= 1, 2) or pure imaginary (/= 3, 4).

Similar exponents with more general elements from linear
subspaces C8"Y for / = 2 and / = 1, 2 (with arbitrary combinations
of indexes from 2J) generate ‘non-universal’ subgroups
isomorphic to Spin (2m) and Spin (2m + 1) respectively [5; 8], but
inclusion element with / = 3 is enough to generate unitary group
SuU(2™) [8].

Due to physical reasons for some models only terms with even
number of generators must be used [4]. Formally, such terms be-

26 Computational nanotechnology

long to even subalgebra C° that may be again treated as a Clif-
ford algebra due to standard isomorphism C&(n — 1) = C€%(n) [10]

¢, ¢ €C%n-1)

ee,, ¢ €Cei(n-1).

Ce(n—1) —>CR%n); ¢ H{ (30)

Thus, a model with even number of generators in Hamil-
tonians and universal subset of quantum gate with [ = 2, 4
[4] is also described by Clifford algebra due to isomorphism
ce%(2m) =ce(2m—-1).

3. ALGEBRAIC MODELS OF S-QUBITS
3.1 EXTERIOR ALGEBRA

Let us consider a vector space V with basis xl.,j: 0,..,m-1.
The exterior (Grassmann) algebra is defined

A(v)=§01\k(v), (31)

where A%(V) are scalars, AY(V) = V are vectors, and AK(V), k> 1 are
antisymmetric k-forms (tensors) with basis

le/\.../\xjk; j1<...<jk (32)

where ‘A’ denotesantisymmetric (exterior) productxl./\xk:—xk/\xj,
XxAx=0,VxeV.

The dimension of whole space A(V) is 2" and any basic state
Eq. (1) of S-qubits could be mapped into A(V)

N

A i
nywes N, >)—) A x;. (33)
1 m jed

njzl

Such a method inserts into exterior product only X; with
indexes j satisfying n, = 1. However, Eq. (33) is one-to-one map
and arbitrary form Q € A(V) corresponds to some state |Q) up
to appropriate normalization.

The creation and annihilation operators in such
representation correspond to a known construction of Clifford
algebra using space of linear transformations on A(V) [5] and
may be expressed for basis Eq. (32)

A0 X AAX D XA A A (34a)
k

aj X At AX Z(—l)lle/\~~'/\(5jljll)/\~"/\Xjk, (34b)
=1

where 1 is unit of algebra A(V) and notation 1 Aw=w A 1=w,
w € A(V) is supposed in Eq. (34). Such operators satisfy Eq. (14)
and respect map Eq. (32) due to consistency of Eq. (34a) with
Eq. (9) and Eq. (34b) with Eq. (12b).

The generators of complex Clifford algebra C&(2m, C) can
be expressed with earlier defined pair of generators Eq. (15)
for each index and for real case elements el.' might be used
to produce C&(m, R) [5].

The considered representation of S-qubits with exterior
algebra A(V) despite of one-to-one correspondence Eq. (33)
for complete basis may be not very convenient for work with
’reducged’ expressions such as Eq. (2), because only qubits with
state |1>Amap into different x,, but any sequence of qubits
in state |0) formally corresponds to unit scalar 1 € A°(V).
An approach with Clifford algebras discussed next helps to avoid
such a problem.
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3.2. CLIFFORD ALGEBRAS AND SPINORS

For Clifford algebra C8 = C€(2m, C) the space of spinors has
dimension 2™ and it can be represented as minimal left ideal [9].
The left ideal € — C8 by definition has a property

ced: Vied;, cecCh. (35)

By definition, the (nonzero) minimal left ideal does not
contain any other (nonzero) left ideal.

The notation with single set of indexes a € J and m pairs
of generators ¢, and e/ is again used below. Annihilations and
creation operators corresponding Eq. (15) are also useful further

.1
o _Catit.

_ea_ie;
a 2i

2i

(36)

a

The minimal left ideal € is generated by all possible products
with an appropriate element £

e = {ce@; ceCe e, = Heg}, (37)
aed
where
1+iege!
€ = =a, (38)

are N commuting projectors (£9)? = €,. Due to identity

0
€, =ie '] for any index a it can be written

el =—ie L. (39)

Let us apply definition of € Eq. (37) to linear decomposition

of ¢ on terms with products of generators ¢, and ¢/. Any element

of €in Eq. (37) may be rewritten as a linear combination of terms

without ¢/ due to Eq. (39). Thus, € has dimension 2" with

products at most m different generators ¢, on €, as a basis. Let
us also introduce notation

_ .t _ .t
€l=a€=a, (40)

then a basis of spinor space € can be rewritten in agreement
with Eq. (1)

(ecet )8, <>

a b
W v, >, a, b,..€J, n,v,..e{0, 1}, (41)

there all indexes a, b, ... must be different.

In representation Eq. (17) with consequent indexes
a=0, .., m—1the elements €] correspond to 2" x 2™ diagonal
matrices with units and zeros described by equation

2100108 1881, (42)
a m-a-1

where € = |0)0]|. Therefore, €, corresponds to a 2" x 27
diagonal matrix with unit only in the very first position

8, £,®...®€,=]0,..., 00, ..., 0[. (43)

—_— =
m m m

In such a case a product c€; in definition of ideal € Eq. (37)
corresponds to a 2™ x 2™ matrix with only nonzero first column.
It can be used for representation of a vector with 2™ components.

For arbitrary sequences of indexes from a set J an analogue
of Eqg. (2) also holds

e;ef = (—1)“"8585, azbed, uvelo 1l (44)

The inequality of indexes a # b is essential, because the super-
commutativity Eq. (44) does not hold fora=bifuzv

€ito =€y €jei=€7€7=0; €je =€y, €€+ ee. (45)

Anyway, all indexes of S-qubits Eq. (1) are different
by definition and inequality in Eq. (45) does not affect considered
representation Eq. (41).
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However, some other expressions for operators or scalar
product Eq. (7) may require more general combinations
of indexes. It is discussed below.

For arbitrary element € e ( the operators a, a*a can
be naturally defined via left multiplication

. . +. +
a:€—> a8 a: € al.

With respect to map Eq. (41) it corresponds to Eq. (12). Let
us check that.

Operators a,, a(: commute with 85’ and anticommute with
Ef for a # b. For equivalent indexes quite natural expressions
follow from definitions

a,80=0; a,8/=85; alei=€7 ael#0. (46)

Let us rewrite map Eqg. (41) with shorter notation for basic
states n
o b :
n.,n,, > o EH:HB{,I_,

jed

(41)

It may be also expressed in an alternative form

e, =[1(a,)"€ :(H aj}ez. (47)

jed jed
n=1
resembling Eq. (33) for Grassmann algebra. Due to Eq. (37)
products of operators a*a are mapped by Eq. (47) into elements
of left ideal of Clifford algebra, cf Eq. (35).

With respect to map Eq. (41) actions of “Z are in agreement
with Eq. (9) and g, satisfy an analogue of Eq. (10). Thus, operators
a,, az and their linear combinations ¢, ¢, are corresponding
to Eq. (12) and Eq. (16) respectively.

The scalar product Eq. (7) also can be naturally expressed.
Let us find conjugations of €; and €7

e =aal=€5 €'=a, (48)
The equation

e7'el =588

8o Jik=0,1 (49)

can be checked directly
t t t t
ey =ee'=2¢);, €/€/=¢€7¢/=0
together with appropriate expressions for products Eq. (41')
ee =€, €¢€.=0. (50)

_ letus also use notation €, for representation of arbitrary
| W), i.e., linear combinations of basic states. Then scalar product
Eq. (7) can be written using Eq. (50)

e = (W) e, - wioe (51)
wro [%] %34

where super-index / denotes set of indexes used in Egs. (41), (41")
and it can be dropped, because all indexes are naturally taken
into account in such algebraic expressions with appropriate
order.

Special notation can be used for ‘scalar part’ of an element

ce C&(2m; C); c=c +; Sclc)=c. (52)

Eq. (51) can be rewritten now to express the scalar product
directly

Sc(€l,8,) = Sc(W]m)e,) = (Wim)sc(e,) =27 (Wio). (53)

Let us introduce an analogue of density operator. For pure
state it can be defined

= €8y, (54)
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with natural property
Py =12 ele = (WD), = (WD) L, =(W|D)E,. (55)

wrwro

Arbitrary operators can be expressed using linear combi-
nations with pairs of basic states

inxnl <o, =85 . 8,=8,(nl0)e,=02. (56

3.3. SUPER VECTOR SPACES
A super vector space [11; 12] is Zz—graded vector space

7
0,1eZ,=—. 57
7 57)

V=V,®V,;
The complex super vector space is denoted C%!%, where d,
is dimension of V.. The elements v € V,, p(v) =0 and w € V,,
p(w) =1 are called even and odd respectively.
The Z,-graded (super) tensor product for such elements can
be defined using sign rule

v®U = (-1 @ v (58)

Roughly speaking, one S-qubit could be compared with element
of €1, but such approach encounters difficulties for more S-qu-
bits. Indeed, Z,-graded tensor product Eq. (58) in definition Eq. (1)
should use different copies of initial space. Such approach may
be quite natural in definition of Z,-graded tensor product of alge-
bras and can be used for construction of Clifford algebras [10; 13].

However, it is not quite clear, how to implement similar idea
for construction of S-qubits from C*!*, because implementation
of m different copies of S-qubit may require to use bigger spaces
such as C™™,

Let us consider basis of V = C™'™: €% € V,, e} € V,,
k=0, .., m— 1. States of qubits ae? + Be} belong to different
2D subspaces of V and their tensor product for k=0, ..., m—-1
is the linear subspace with dimension 2" of the ‘'whole’ tensor
product V®™ with dimension (2m)™. However, it may look as not
very natural choice.

For more trivial cases C%!® and C°% the tensor product
of super vector spaces could be treated as symmetric and an-
tisymmetric tensors respectively, but in such a case all vector
spaces in product are usually considered as identical. Similar
approach with identical copies of C%!% is also quite common
in supersymmetry. Thus, superspace is only briefly mentioned
here for comparison with other models of S-qubits and the term
super-indexed is used earlier to emphasize the difference with
known supersymmetric model of qubits [14].

It should be mentioned also, that in the spinor model of S-qu-
bits discussed in Sec. 3.2 the elements 65 formally do not belong
to superalgebra. Despite the super-commutation rule is valid for
different super-indexes Eq. (44), it can be violated for the same
one, Eq. (45).

4. CONCLUSION

Jordan—Wigner transformation maps some operators Eq. (8a)
acting ‘locally’ on n qubits (or spin-1/2 systems) into n fermionic
creation and annihilation (ladder) operators. The ’nonlocal’
construction of such a map supposes introduction of some formal
ordering on the set of qubits. Such ordering may be natural for
some simple models such as 1D chain. All ladder operators
in fermionic system are formally equivalent and unnatural order
produces technical difficulties for more general models such
as multidimensional lattices and more general graphs.

Antisymmetric algebra may be formally used for equal
(unordered) description of ladder operators, but it does not
answer a question about inequality of states. To address such
a problem in this work was suggested model of 'super-indexed’
S-qubits. Equivalence relation necessary for agreement with
Jordan—Wigner transformation and anti-commutativity of ladder
operators is signed exchange rule for S-qubits Eq. (2).

Algebraic model of S-qubits with such property was also
discussed. The model uses Clifford algebras and spinors. Such app-
roach is different with analogue constructions more common in su-
persymmetric models only briefly discussed in subsection above.
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Abstract. This work uses the algebraic approach to show how we communicate when applying the quantum mechanics
(QM) concept of coherence, proposing tri-state+ in quantum computing (QC). In analogy to Einstein’s stimulated emission, when
explaining the thermal radiation of quantum bodies in communication, this work shows that one can use the classical Information
Theory by Shannon (with two, random logical states only, “0” and “1”, emulating a relay), and add a coherent third truth value Z,
as a new process that breaks the Law of the Excluded Middle (LEM). Using a well-known result in topology and projection as a “new
hypothesis” here, a higher dimensional state can embed in a lower-dimensional state. This means that any three-valued logic system,
breaking the LEM, can be represented in a binary logical system, obeying the LEM. This satisfies QC in behavior, offering multiple
states at the same time in GF(3™), but frees the implementation to use binary logic and LEM. This promises to allow indeterminacy,
such as contingency, reference failure, vagueness, majority voting, conditionals, computability, the semantic paradoxes, and many
more, to play a role in logic synthesis, with a much better resolution of indeterminate contributions to obtain coherence and help
cybersecurity. We establish a link between Einstein’s and Shannon’s theories in QM, hitherto not reported, and use it to provide
a model for QC without relying on external devices (i.e., quantum annealing), or incurring in decoherence. By focusing on adequate

software, this could replace the emphasis in QC, from hardware to software.

Key words: QuIC, interconnects, communication, bit, qubit, qutrit, qudit, qtrust, tri-state+, information, algebraic, validation,

quantum, classical, meaning, coherence

Acknowledgments. The author is indebted to Software Engineer Andre Gerck, Tiffany Gerck Project Manager of Planalto Research,
Edgardo V. Gerck doctorate student, and three anonymous reviewers. Research Gate discussions were also used, for “live” feedback,

important due to the physical isolation caused by COVID.

FOR CITATION: Gerck E. Tri-State+ Communication Symmetry Using the Algebraic Approach. Computational Nanotechnology.
2021. Vol. 8. No. 3. Pp. 29-35. DOI: 10.33693/2313-223X-2021-8-3-29-35

1. INTRODUCTION

In the past few decades, the qubit — a two-level quantum-
mechanical system — has attracted considerable attention for
its mysterious quantum properties [1; 2]. In trying to open
the “black box” in the quantum state of a qubit, with further,
better, analysis of the interaction process, one can hope to find
a “new hypothesis” where the data make a wider causal sense,
bringing much higher speed, cybersecurity, and scalability.
The development of nanoelectronics devices also needs to
involve quantum computing in allowing prediction of the desired
structure of matter. Whether we want to use binary logic, ternary
logic, or other is still open. Fast Galois field calculations are
available in current binary chips, as well as spintronic methods,
all with finite integer fields. They are especially useful for
processing-in-memory and neural networks. Digital computers
can emulate floating point numbers, continuous results, and
CDs can play apparently continuous music from discrete files,
in any rhythm, better than analogue. Analogue and continuity
have become the approximation, while digital has become
the true result. Code is the exact result we see everywhere,
while analogue has been more and more deprecated. Work
on nanoelectronics may require the development of quantum
computers with a fundamentally new architecture. One
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is starting to see the possibility of increasing the logic level
of representation. This has led to the proposals of three-level
systems (qutrit) [3], four-level systems (qudit) [4; 5], and three
or more logic level systems called qtrust. The algebraic approach
of this work is illustrated by gtrust, that uses a variable number
of logic states, over extended finite integer fields with at least
a ternary base in GF(3") [6]. The results suggest that qutrits,
qudits, and gtrust offer a promising path toward extending
the frontier of quantum computersand possibly nanotechnology.
Theoretical work [7] suggests that quantum processors based
on three-level logic systems, or qutrits, might require fewer
resources to build than one based on qubits. A similar result
is offered for qudits [4] and qgtrust [6]. Logic does not have to
be binary, or incomplete. Ambivalence, e.g., is a valid result in a
ternary system.

Here, at this very Moscow State University, Setun (Russian:
CeTyHb) was a three-level logic computer developed in 1958,
as well-known. It was arguably the most modern ternary
computer, using the symmetric ternary number system and
three-valued ternary logic instead of the two-valued binary logic
prevalent in other computers. In 1965, a regular binary computer
was used to replace it. But in 1970, a new ternary computer
architecture, the Setun-70, was developed; it was implemented
as a simulation program running on a binary computer.
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This demonstrated that while ternary logic may have com-
putational advantages, binary computers seem to be sufficient.
We can extend to more physical arguments, in further topics.
For example, the first protocol in quantum cryptography was
the BB84, which however may not have taken advantage
of the full potential of multiple superposition states [8]. Using
three-or-more logic is suitable for describing a quantum
cryptography protocol which may have a number of advantages
compared to the “binary” BB84 protocol. This is to be published
elsewhere. A two-day NSF workshop, held Oct. 31 —Nov. 1, 2019,
changed the focus to “Quantum Interconnect” (QulC), leading
to a roadmap focusing on components and introducing QuICs,
which report was published by a group with Awschalom and
including 34 others [2]. In two-state systems given by qubits,
Awschalom [2] seem to present special challenges for QuICs.

Comparatively, the current quantum theory of qubits
is linked, however, to the classical “bit”, following Boolean
or classical logic laws, such as the Law of the Excluded Middle
(LEM), which carry only two possible values, “0” and “1”,
to emulate the workings of a relay circuit, and uses a formless
“fluid” analogy of classical information, that can only be blocked
(relay open), routed or replicated (relay closed).

It is therefore highly desirable to investigate the model
of communication, especially in the quantum regime, of an ex-
pected quantum communication system, as key to quantum
computation (QC), quantum speed, and cybersecurity.! In par-
ticular, whether an algebraic approach with a three-or-more
valued logic in software can satisfy the postulates of quantum
mechanics and can be encoded in the standard binary hardware.
This also, in reversal of the usual Bohr correspondence
principle, which states that the behavior of systems described
by the theory of quantum mechanics must reproduce classical
physicsin the limit of large quantum numbers. Here, the quantum
regime dictates the rules of the classical regime, imposing
tri-state, and can improve the binary theory of Shannon [9],
as considered in Section 5. A shorter version was used in the ac-
tual presentation, and is available online at [6].

2. BREAKING THE LEM

The LEM is broken in the double-slit experiment [1] in QM.
This is shown experimentally, as confirmed by all experiments
to date [1], with such low light intensities so that only one
photon would enter the apparatus.

Theoretically, the general state is given by W, as the one-di-
mensional Schrédinger equation for bound states in QM [10]:

A e oty w
2m  dx

where E is the energy and V(x) is the potential, with the bound-
ary conditions (0) = (=) = 0. Here, W is also the coherent su-
perposition of the solutions W_and W,, where only slit a or slit b
are open at the same time:

1
Y=—(Y,+Y¥,) (2)
\/E( b)
Thus, the behavior of systems described by the Niels Bohr

interpretation of QM2 does not reproduce classical physics
in the limit of small quantum numbers, although it reproduces

! How can one prevent a next SolarWinds, Microsoft Exchange, and
the Colonial Pipeline cyberattacks?

2 We do not support the Copenhagen interpretation [9; 10].
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for high quantum numbers, being counter-intuitive [1] to our
usual observed experience, in those small numbers.

The reason the double-slit experiment is counter-intuitive
is because it breaks the LEM.? Freedom from LEM would save
cost, as discussed in Section 5, by using three or more logical
states. And in order to allow a better resolution of indeterminate
contributions (such as in 1-out-of-3 voting), more than two states
can be used to obtain coherence.

While many are considering a far-future and expensive
hardware solution for QC, such as quantum annealing, this work
sees ‘breaking the LEM’ as an opening to a “new hypothesis”
here. Freedom from LEM would save cost, as discussed
in Section 5, by using three or more logical states. And in order
to allow a better resolution of indeterminate contributions
(such as in 1-out-of-3 voting), more than two states can be used
to obtain coherence.

If the world is quantum or not, anyway Newton’s calculus
and real numbers lead to infinitesimals and infinities, which were
shown by Brillouin [13] to be non physical. No one can physically
push spacetime arbitrarily close to zero, no without limit, or
exclude particle creation or annihilation at low frequecies.
Galois fields and finite differences can be used, however, to build
an alternative to conventional calculus, without infinitesimals
or the limit concept, so that the conventional approach of ana-
lysis need not to be the only approach, for physicists [14]. The
derivative and integral formulas, however, remain the same.
The new finite difference theory can be perfectly accurate, and
yet there is always a space between integers, which represent
different points in spacetime.

However, physics is showing that, although non physical,
one can keep using infinitesimals and infinities in mathematics,
and not change analysis (i.e., calculus) or limits. This is because
a higher dimensional state can embed in a lower dimensional
state, as well-known in projection. In physics, the universe can
have singularities, be quantum at the core, and yet reality should
be the consequence of a continuous-looking universality [12; 13] —
where we observe this through what can only ever be a far-away
reference frame. The details of the microscopic, even breaking
the LEM, should not be so relevant to the macroscopic behavior
and asserting the LEM, in universality. Can the same be affecting
communications, that we are not seeing the microscopic?

In 1916-1917, Einstein [15; 16] famously argued that,
in addition to the random processes of spontaneous absorption
and spontaneous emission in Eq. (1), a third, new, and coherent
process of stimulated emission must exist microscopically for
physical bodies, as a result providing experimental evidence
for the quantum, reproducing exactly the experimental studies
of the thermal radiation of bodies in quantum communication,
and providing the basis for the later invention of the laser (light
amplification by simulated emission of radiation).* This is the so-
called black-body radiation law, macroscopic, and even normal
light from a candle, a lamp, or, a radio wave, have a stimulated
emission component. This has been extended recently, as well-
known, with collective effects, such as superradiance and
superabsorption, into 5 states, but with no essentially new
process. Following the ternary pattern, one can readily predict
that superstimulated emission should also exist, as a collective
effect, and this pattern should go further.

3 One cannot split the photon at the double-slit experiment, notwithstanding

Huygens and all classical considerations, such as the Maxwell equations.
It would not be one particle anymore [1].

More than 55 000 laser-related patents have been granted in the United
States.
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This work’s “new hypothesis” here, in trying to open
the “black box” in the quantum state, with further, better, analysis
of the interaction process, that we hope to find, where the data
make a wider causal sense. It is GF(3") = GF(2™), for suitable
m>n e Z/7Zp, where p is a prime, meaning that any three-valued
logic system, breaking the LEM, can be represented (i.e, embed)
in a binary logical system, obeying the LEM. Therefore, Einstein’s
“stimulated emission” provides coherence in universality, and
applies not only to bodies that we must use to transmit and
receive information, but also to how we communicate.

For example, an answer stimulates someone to emit
a reply in coherence (stimulated emission), or anti-coherence,
and it must be in coherence to be effective, and so on.
To communicate, we realize in day-to-day experience that one
needs not only information, as surprise, but also coherence,
as that which both sides know.

We establish a unity, with this hypothesis, between
Einstein’s [14; 15] and Shannon’s [16; 17] theories, hitherto
not reported, with plenty of physical examples, both referring
to quantum communication processes of bodies, and extend
it to be applicable also when bodies are not used, but
communication exists.

3. NETWORK CODING

Network coding, originally proposed in 2000 [18], can now
be considered for coherent and secure traffic. Between the source
and any of the receivers of an end-to-end communication session,
one is not only capable of stopping, relaying and replicating data
messages, as Shannon considered, but also of coding incoming
messages to produce coded outgoing ones, which has been used
classically for attacks and, beneficially, for network coding [19],
in preventing attacks, and for peer-to-peer content distribution,
since it eliminates the need for content reconciliation, and
is highly resilient to peer failures.

The fundamental insight of network coding is that informa-
tion to be transmitted from the source in a session can be inferred,
by the intended receivers, and does not have to be transmitted
verbatim. A similar concept is found in the well-known spread
spectrum techniques, and in cybersecurity [20], where anchors
can be used to correct the information received from the source
using, e.g., majority voting (1-out-of-3).

The significant aspect in QC, as the result of coherent
superposition in Eq. (2), is still that the actual message
is one selected from a set of possible messages. This
is achieved by coherence, whereby the message is qualified.
As a consequence, it has the proper semantics [21], e.g.,
the proper meaning.

From this perspective, one is not rejecting Shannon’s IT
because it is binary, two-state, obeys the LEM, uses binary
computers, or uses the “fluid” model, in implementation, but
proposing Shannon’s IT as part of implementing a larger quantum
theory of IT with three or more states in logic behavior in QC.

4. SHANNON - A MATHEMATICAL THEORY
OF COMMUNICATION

In 1948, Claude Shannon published “A Mathematical
Theory of Communication” [16]. Communication is defined [22]
as the process whereby information is transferred from one point
in spacetime, called the source, to another point in spacetime,
called the destination. Information is what is transferred from
source to destination, if nothing is transferred the information
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is zero and there is no communication; information can
also be seen as surprise, as to what is received. This relates
to uncertainty, and information is a measure of uncertainty,
which is then related to entropy. The average information
is called the source entropy [22].

The once fuzzy concept of “information” was proposed
in a precise way, as stated above, to quantify the fundamental
unit of classical information, the “bit”, and using binary logic,
with the LEM being valid.

Previous work has beenincluded, selectively, in the references
given so far. However, we do not criticize any of such previous
references, that are necessarily wrong when applied to quantum
information systems, but say that the symmetries of a binary
system, that must use the LEM and binary logic, are insufficient
for a suitable quantum communication process.

5. TRI-STATE VERSUS TWO-STATE

This work advances experimentally in binary logic,
the observation that, for the same function, computation can
be accomplished better even classically, by using three logical
states, rather than one can do with binary logic, which necessarily
includes the LEM.

This is perhaps surprising but well-known experimentally
in complex digital systems [23], that allow designers to separate
behavior from implementation at various levels of abstraction,
in order to achieve, routinely, million gate chip designs while
working with tri-state™ using [24], a ternary logic system as
in Fig. (2).

Our argument, in “modus ponens”, is that, a coherent logic
state, building a “coherent channel”, should exist also in classical
Information Theory, although embedded in a binary logic system,
in order to be able to model the communication that must
exist, analogous to the experimental fact that a physical state
of simulated emission must microscopically exist in quantum
communication using physical systems of atoms, molecules, and
plasma, as well-known by Einstein [15; 16].

The “coherent channel” provides coherence, as behavior
in both cases, surprisingly, even in the classical computing
implementation using binary logic, LEM computers.

A natural question is then satisfied, whether three-or-
more valued logic systems can be embedded in a binary logical
system. The answer is yes, as well-known in topology and
projection. Achieving freedom from the LEM in the behavior
while the implementation can obey the LEM, and saving cost.
Cobreros et all. [25] and Fedorov et al. [4] have also analysed it,
positively. As shown [23], this would work experimentally, but
at the expense of performance — in cost, speed, and noise
rejection — and scalability.

But this further establishes, in “modus tollens”, a physical
unity between Einstein’s and Shannon’s theories in the quantum
regime. We can use it to provide a model for QC without relying
on external devices (i.e., quantum annealing), or incurring
in decoherence [26].

The question is, can a software breaking the LEM, run on LEM
hardware? We discuss it positively, and tri-state can then offer
many more discriminating channels than binary logic, allowing
amuch better resolution of indeterminate contributions to obtain
coherence, allowing them to be much better discriminated for
and filtered by correlation, not just by clipping.

To those who question that tri-state or more would be so-
mehow “illogical” to consider, one notes that, in unpublished
notes, before 1910, Charles Sanders Pierce is well-known
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to have soundly rejected the idea that all propositions must
be either True or False, as in Boolean logic, the same as Frege
in semantics [21]. Pierce developed well-understood rules
where the LEM is not valid, including some truth tables.
A modern treatment can be seen in the results by Jones [27],
and our works in publication.

The two-state logic levels are given in Fig. (1) in the next
page, offering: (1) a low-level state “0” when the lower
transistor is on and the upper transistor is off; and (2) a high-
level state “1” when the upper transistor is on and the lower
transistor is off.

VCC VCC

o

/ ®
——o0 ——o0

[ )
I ° /!
——o0 ——o0

GND GND

Fig. 1. Example of two-state levels in a circuit, 0 and 1

VCC VCC VCC

o

./ o ./
o o o
® ®
A A
o o o
GND GND GND

Fig. 2. Example of three states logic: 0, 1, Z

To implement three state logic, a physical possibility
is a conventional tri-state buffer or gate.® This can be seen
in Fig. (2), showing the three cases in positive logic:

The solution found for the third logic level, and implemented
in [23] devices, was to use a high-impedance state “Z”, that allows
a direct wire connection of many outputs (e.g., routinely with up
to a hundred outputs), to a common line, a bus. This exemplifies
a programmable (and coherent) interconnect, by the semantics
and a challenge-response system, with the ability to move
information between different systems that serve distinct tasks
at the same time, with freedom from the LEM in the behavior
while the implementation can obey the LEM, saving cost.

Using state Z to behave as a coherent interconnect, current
information technologies using challenge-response systems,
as in a SystemVerilog design [23; 24], can have a semantics
to connect to different systems, can avoid race-conditions,
handle faults, and maintain a coherent design across different
systems. These aspects can also be programmed dynamically
at operation time, using tri-state™ designs [23].

® Such as the 7415241 octal buffer.
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The complications of using tri-state logic in implementation
of the logic synthesis leads to different benefits/drawbacks
in each design, such as using more complex three-valued logic
gates or simple two-valued logic gates [23]. As explained above,
and as further reviewed in the next Section, “any three-valued
logic system, breaking the LEM therefore, can right-represent (i.e,
embed) in a suitable two-valued logical system, obeying the LEM.”

However, they are not equal, not even entirely equivalent.
Any hardware description language (HDL) such as SystemVerilog
will eventually be synthesized and different vendors offer
different synthesis tools to create devices of their making from
the same HDL behavior description. Of interest here, an FPGA
vendor, e.g., could code the HDL in a module with a bus they
designed. However, when the FPGA is actually synthesized
from the code, it would have to use a tri-state buffer because
an FPGA cannot output tri-state. Solutions by FPGA vendors
such as Actel [28] describe other procedures, since there is no
physical tri-state logic inside an FPGA. In this case, an Actel FPGA
implements internal multipledrivers on a net with multiplexers
instead of three-state logic.

But the states are in different dimensions, and a continuous
path in the higher dimension (tri-state) would necessarily map
into a discontinuous path in the lower dimension (two-state).
This happens due to a well-known theorem in topology and
projection, important in communication [22], that we call TR,
standing for Topological Reduction. Chiral information (3D), e.g.,
is well-known not be represented in a projection to 2D, but can
in a projection to GF(23).

In QC, one can be more precise than physical QM if one makes
the model, as the behavior, be more inclusive for coherence,
even though implementation should be limited, for practical
reasons, to use GF(2™) and use the LEM. Hence, QC promises
to be easier to realize than QM.

Three-valued logic, even in GF(2™) implementations, besides
contingency, reference failure, and vagueness, have been
associated with at least four other phenomena of interest —
namely, conditionals, majority voting, computability, and
the semantic paradoxes [25; 29]. These mathematical processes
relate to coherence and are inversely related to indeterminacy.

The addition of a third truth value in ternary logic using
GF(3"), or tri-state+, is calculated with nin Table 1. Higher n orders
promise to open the floodgates to a large and near unlimited
number of outputs that can be simultaneously considered, for
speed and cybersecurity, with many more distinct operators,
whatever base one uses. As shown in Table 1, using tri-state+ offers
many more discriminating channels, as near 6e + 347 possible
outputs exist with n = 3, for a possible choice of n, than GF(2),
or binary logic, with two-states, allowing a much better resolution
of contributions, with a much improved correlation.

One feels the need to introduce more symmetries than
GF(2), or binary logic, in Shannon IT [16]. No longer should
we be forced to regard information as a formless “fluid”, which
can only be blocked, routed, or replicated, obeying the LEM
as a “Procrustean bed”.® For example, one can use majority
voting, or 2-out-3 function, even in GF(2?).

6. THE ALGEBRAIC APPROACH IN QC

This work is based on the algebraic properties of modular
arithmetic in number theory, following QC in three or more
states, as in GF(3") or GF(2™), and breaking the LEM.

5 Where binary logic, an arbitrary standard, is used to measure success,
while completely disregarding obvious harm that results from the effort.
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Modular arithmetic, which is widely known, is a system
of arithmetic for finite integers, where numbers “wrap around”
when reaching a certain value, called the modulus. One
considers two integers x and y to be the same if x and y differ
by a multiple of n, and write this as x = y mod n, and say that x
and y are congruent modulo n. Intuitively, division should ‘undo
multiplication’, that is "to divide’ x by y means to find a unique
number z such that z times y is x. A unique z exists modulo n only
if the greatest common divisor of y and n is 1, and we say that y
and n are co-prime.

But while the foregoing is clear, as a subject, Galois fields
has also to do with the structure of groups and the relationship
with the structure of fields, and how the roots of a polynomial
relate to one another. For example, it is easy to implement
how finite integer division works, see above, using direct Galois
numbers such as GF(2), but it is more involved with extended
Galois numbers, such as GF(2"). Due to universality in physics,
seen above, these perhaps confounding factors are of no direct
concern here, in communication at a higher level, and are
perhaps of interest only to some mathematicians.

In mathematics, a ‘field’ is any set of elements that satisfies
the field axioms for both addition and multiplication and
is a commutative division algebra. The group of finite integers
modulo p, where p is a prime number, is denoted in mathematics
by Z/Zp. It is well-known that Z/Zp:

1) is an abelian group under addition;

2) is associative and has an identity element under mul-

tiplication;

3) is distributive with respect to addition, under multi-

plication;

4) is afield.

A mathematical field with a finite number of members
is known as a finite field or Galois field. This name is the only
property of Galois fields that interest us here.

Finite fields, as GF(p"), has been useful in the fields
of cybersecurity [20], error-correction [30], and encryption, with
the well-known AES (Advanced Encryption Standard), where
GF(2%)is used to translate computer data as they are represented
in binary, syntactic forms, using Galois extended finite integer
fields GF(2™), with m = 8, as well-known.

This work provides for implementation in a binary gate
multi-agent environment, while keeping the ternary behavior,
and extendingit, offering 3,9, 27... states. Itisthen possible that
other finite integer numbers could be used, and they all would
be mathematical fields, but three states seems supported
by the formation of the atomic line with “stimulated emission”
[14; 15], universality [12; 13] justifies using any number
higher than GF(2), breaking the LEM with QM and Eq. (1)
requires at least three states, and using Galois fields already
extends exponentially any chosen finite integer, as in Table 1,
while offering fast hardware support in today’s processors
with GF(2™) [30].

With binary logic and diadic operators (2 inputs, binary),
there are 16 functions. In electrical engineering, gates
implement these functions, notably the AND, OR, NAND, NOR,
and XOR (exclusive or) gates. The NAND or XOR gates are
functionally complete (meaning that any digital logic circuit can
be constructed from either one of these gates) [23]. The XOR
function (half adder circuits are implemented with XOR gates)
needs brute-force for reversal, and this is basic in cryptographic
applications, such as the well-known Advanced Encryption
Standard (AES) with GF(28). Table 1, summarizes the results,
below.
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Table 1
Two-state versus GF(3")
Logic Monadic Dyadic
Order . .
states input operators input operators
Binary 2 4 16
1 3 33 33 x3
2 32 332 332 x32
3 33 333 333 x33
n 3n 33" 33" x 3N

We see in Table 1, that for diadic functions, the number
increases considerably for ternary operators, reaching 33 * 3
or 19,683, compared with 16 for binary operators, though not
all functionally complete. The diadic ternary functions can help
reduce indeterminacy, with a better correlation. There are, clearly,
too many functions to enumerate. We will refrain from exploring
them, because we can already achieve freedom from the LEM
in the behavior while the implementation can obey the LEM.

As the number of states in GF(3") advance, Table 1 shows
that the number of possible operators increase exponentially
and, while many are trivial and not functionally independent,
a total of near 6e + 347 diadic operators exists with n = 3,
to be implemented in QC.

We now remember the statement of the last Section, that
“any three-valued logic system, breaking the LEM, can represent
(i.e, embed) in a two-valued logical system, obeying the LEM.”
This calls us to separate behavior from implementation,
so that computation, or physical realization, of tri-state+ logic,
breaking the LEM, is able to use known binary logic, with LEM
components or gate circuits. Proof: the number of binary states
in GF(2™) can increase more than the number of tri-states+
in GF(3"), with m > n.

In other words, three states break the LEM, but GF(3) can
be realized in GF(2™), which obeys the LEM, can use binary
functions, and has already more functions than GF(3), for m = 3.
With ternary logic, the number of monadic functions is 3% or 27,
while this is exceeded by GF(23), with 256 monadic operators.
We achieved freedom from the LEM in the behavior while
the implementation can obey the LEM.

Stimulated emission is seen as a necessary, ternary
manifestation of coherence, and we propose it (e.g, see our
“new hypothesis’ in Sections 1 and 6). We call it tri- state+,
and it extends itself in a ternary pattern to ever higher orders,
captured here by the GF(3") symmetries, using an algebraic
approach where the number of states is not fixed a priori,
and coherence effects can be used, further and further, while
in communication using GF(2™) implementations.

Here, therefore, the role of an added mathematical apparatus
as discussed here for Galois fields, is not to create unnecessary
complications in a description of reality, but implies that there
exist more adequate and representative pictures of reality
where these other number fields can be used as basic elements
of the mathematical description [31].

Accordingly, one moves from the classical Shannon Boolean
analogy of circuits with relays, valid for the LEM and a formless
and classical “fluid” model of information, with a syntactic
expression called ‘bit’, to a quantum tri- state+, where information
is given by an algebraic approach with ternary object symmetry,
modeled by GF(3") and implementable as GF(2™).
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7. DISCUSSION

By providing a well-known “Procrustean bed”, binary logic
shuts off indeterminacy, without processing it, and arrives
at a classical, apparently clean and determinate, result that
does not take any indeterminacy into account, though reducing
design effort.

The properties of such theory have two quantum fatal
flaws affecting the “bit” model for QC, in addition to fatal
consequences such as the LEM, already disproved in the double-
slit experiment in QM. Quantum information is not a formless
“fluid”, modeled by a simple object, the “bit”, and that can
simply be blocked, routed or replicated; Shannon’s IT is thus not
able to take network coding into account. Quantum information
further does not always obey binary logic. The Shannon thesis
of similitude of communication circuits with relay theory, and
with binary logic, thus LEM, is valid only in the classical.

This work’s “new hypothesis”, called tri-state+, in trying
to open the “black box” of QM, is then that any three-valued
logic system, breaking the LEM, can be represented (i.e, embed)
in a suitable binary logical system, obeying the LEM. This agrees
with all the theoretical and experimental evidences, dating from
1916, with Einstein and the existence of the quantum. In this
“new hypothesis”, where the data can make a wider causal sense
with Sannon’s IT, the LEM has limited validity in QC, due to useful
indeterminacy contributions, that must remain indeterminate
in Eq. (2), the QM solution sought by QC. Thus, coherence effects
should be used in communication. This is another example
of universality in physics.

A new type of industry, of cybercrime, has been developing
profitably also since 2000 [32; 33], which can now be checked
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