ПРИЛОЖЕНИЕ БЕЗОРБИТАЛЬНОГО ПОДХОДА К МОДЕЛИРОВАНИЮ МНОГОАТОМНЫХ СИСТЕМ С РАЗЛИЧНЫМИ НАПРАВЛЕНИЯМИ МЕЖАТОМНЫХ СВЯЗЕЙ
(Стр. 24-29)

Подробнее об авторах
Заводинский Виктор Григорьевич
Хабаровское отделение Института прикладной математики Дальневосточного отделения Российской академии наук
г. Хабаровск, Российская Федерация Горкуша Ольга Александровна
Военная академия связи имени маршала Советского Союза С.М. Буденного
г. Санкт-Петербург, Российская Федерация
Оплатить 390 руб. (Картой) Оплатить 390 руб. (Через QR-код)

Нажимая на кнопку купить вы соглашаетесь с условиями договора оферты

Аннотация:
На примере трехатомных кластеров Al3, Si3 и С3 показано, что безорбитальный вариант теории функционала плотности может быть использован для нахождения равновесных конфигураций многоатомных систем как с металлической, так и с ковалентной связью. Получены равновесные межатомные расстояния, энергии связи и углы между связями в хорошем согласии с известными данными.
Образец цитирования:
Заводинский В.Г., Горкуша О.А., (2016), ПРИЛОЖЕНИЕ БЕЗОРБИТАЛЬНОГО ПОДХОДА К МОДЕЛИРОВАНИЮ МНОГОАТОМНЫХ СИСТЕМ С РАЗЛИЧНЫМИ НАПРАВЛЕНИЯМИ МЕЖАТОМНЫХ СВЯЗЕЙ. Computational nanotechnology, 1 => 24-29.
Список литературы:
Wang Y.A., Carter E.A. Orbital-free kinetic-energy density functional theory. In: Progress in Theoretical Chemistry and Physics. Kluwer, Dordrecht. 2000, 117 p.
Huajie Chen, Aihui Zhou. Orbital-Free Density Functional Theory for Molecular Structure Calculations. Numerical Mathematics: Theory, Methods and Applications, 2008, 1, 1-28.
Baojing Zhou, Ligneres V.L., Carter E.A. Improving the orbital-free density functional theory description of covalent materials. Journal Chemical Physics, 2005, 122, 044103-044113.
Hung L., Carter E.A. Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics. Chemical Physics Letters, 2009, 475, 163-170.
Karasiev V.V., Trickey S.B. Issues and challenges in orbital-free density functional calculations. Computational Physics Communications, 2012, 183, 2519-2527.
Karasiev V.V., Chakraborty D., Shukruto O.A., Trickey S.B. Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations. Physical Review B, 88, 161108-161113(R).
Wesolowski T.A. Approximating the kinetic energy functional Ts[ρ]: lessons from four-electron systems. Molecular Physics, 2005, 103, 1165-1167.
Kohn W., Sham J.L. Self-Consistent Equations including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133-A1138.
Hohenbeg H., Kohn W. Inhomogeneous Electron Gas, Physical Review, 1964, 136, B864-B871.
В.Г. Заводинский, О.А. Горкуша. ФТТ, 56, 2253 (2014);
Junchao Xia, Chen Huang, Ilgyou Shin, Carter E.A. Can orbital-free density functional theory simulate molecules? The Journal of Chemical Physics, 2012, 136, 084102(13).
Raghavachari K., Logovinsky V. Structure and bonding in small silicon clusters. Phys. Rev. Lett. 1985, 55, 2853-2856.
Van Orden A., Saykally R.J. Small carbon clusters: spectroscopy, structure, and energetics. Chemical Review, 1998, 98, 2313-2357.
Feng-Chuan Chuang, Wang C.Z., Ho K.H. Structure of neutral aluminum clusters Aln (2≤n≤23): Genetic algorithm tight-binding calculations. Phys. Rev. B, 2006 ,73, 125431(7).
Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Computational Physics Communications, 1999), 119, 67-98.
Perdew J.P., Zunger A. Self-interaction correction to density functional approximation for many-electron systems, Physical Review B, 1981, 23, 5048-5079.
Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method, Physical Review Letters, 1980, 45. 566-569.
Tomanek D., Schluter M.A. Structure and bonding of small semiconductor clusters. Phys. Rev. B, 1987 36, 1208-1217.
Mukhtarov A.P., Normurodov A.B., Sulaymonov N.T., Umarova F.T. Charge States of Bare Silicon Clusters up to Si8 by Non-Conventional Tight-Binding Method. Journal of nano- and electronic physics, 2015, 7, 01012(7).
Nayak S.K., Khanna S.N., Jena P.J. Evolution of bonding in AlnN clusters: A transition from nonmetallic to metallic character. Physical Review B, 1998, 57, 3787-3790.
Matrínez A., Vela A. Stability of charged aluminum clusters. Physical Review B, 1994, 49, 17464(4).
Karton A., Tarnopolsky A., Martin J.M.L. Atomization energies of the carbon clusters Cn (n=2-10) revisited by means of W4 theory as well as density functional, Gn, and CBS methods. International Journal of Interface between Chemistry and Physics, 2009, 107, 977-1003.
Mahdi Afshar, Mahboobeh Babaei, Amir Hossein Kordbacheh. First principles study on structural and magnetic properties of small and pure carbon clusters (Cn, n = 2-12) Journal of Theoretical and Applied Physics, 2014, 8, 103-108.
McCarthy M.C., Thaddeus P. Rotational spectrum and structure of Si3. Physical Review Letters, 2003, 90, 213003(4).
Liu B., Lu Z.Y., Pan B., Wang C.Z., Ho K. M., Shvartsburg A.A., Jarrold M.F. Ionization of medium-sized silicon clusters and the geometries of the cations. Journal of Chemical Physics, 1998, 109, 9401-9409.
Raghavachari K., Rohlfing C.M. Bonding and stabilities of small silicon clusters: A theoretical study of Si7-Si10. Journal of Chemical Physics, 1988, 89, 2219-2234.
V.G. Zavodinsky, O.A. Gorkusha. A practical way to develop the orbital-free density functional calculations. Physical Science International Journal, 2014, 4(6), 880-891;
В.Г. Заводинский, О.А. Горкуша. На пути к моделированию больших наносистем на атомном уровне. Computational nanotechnology, 2014, 1, 11-16;
V.G. Zavodinsky O.A. Gorkusha. A new Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles. Modeling and Numerical Simulation of Material Science, 2015, 5, 39-47.
Ключевые слова:
Моделирование, функционал плотности, безорбитальный подход, тримеры, ковалентные связи.


Статьи по теме

МОДЕЛИРОВАНИЕ НАНОСИСТЕМ И НАНОЭЛЕКТРОНИКА Страницы: 11-16 Выпуск №3497
НА ПУТИ К МОДЕЛИРОВАНИЮ БОЛЬШИХ НАНОСИСТЕМ НА АТОМНОМ УРОВНЕ
моделирование функционал плотности безорбитальный подход димеры
Подробнее
Разработка функциональных наноматериалов на основе наночастиц и полимерных наноструктур Страницы: 11-17 DOI: 10.33693/2313-223X-2021-8-2-11-17 Выпуск №19121
Энергетика и упругие свойства больших нано-объектов: безорбитальный подход на основе теории функционала плотности
безорбитальный подход полноэлектронный потенциал теория функционала плотности моделирование наноматериалы
Подробнее
05.13.18 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ЧИСЛЕННЫЕ МЕТОДЫ И КОМПЛЕКСЫ ПРОГРАММ Страницы: 80-85 DOI: 10.33693/2313-223X-2019-6-3-80-85 Выпуск №15633
ПОЛНОЭЛЕКТРОННЫЙ БЕЗОРБИТАЛЬНЫЙ МЕТОД МОДЕЛИРОВАНИЯ АТОМНЫХ СИСТЕМ: ПЕРВЫЙ ШАГ
квантовое моделирование теория функционала плотности безорбитальный подход кинетический функционал
Подробнее
Разработка функциональных наноматериалов на основе наночастиц и полимерных наноструктур Страницы: 29-36 DOI: 10.33693/2313-223X-2020-7-3-29-36 Выпуск №17377
Исследование энергетики углеродных нанотрубок безорбитальным методом в рамках теории функционала плотности
квантовое моделирование теория функционала плотности безорбитальный подход углеродные нанотрубки quantum modeling
Подробнее
1. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ЧИСЛЕННЫЕ МЕТОДЫ И КОМПЛЕКСЫ ПРОГРАММ Страницы: 30-34 Выпуск №6518
НОВЫЙ ШАГ К МОДЕЛИРОВАНИЮ БОЛЬШИХ НАНОСИСТЕМ, СОДЕРЖАЩИХ АТОМЫ РАЗЛИЧНЫХ ТИПОВ
теория функционала плотности безорбитальный подход атомы разного типа функционал кинетической энергии
Подробнее
5. МАТЕМАТИЧЕСКИЕ И ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ЭКОНОМИКИ 08.00.13 Страницы: 148-153 Выпуск №18204
Разработка индикативной системы оценки уровня «счастья» с использованием глобальных индексов, включая человеческий капитал
регрессионный анализ корреляция моделирование прогнозирование ВВП на душу населения
Подробнее
ЭРГОНОМИКА СЛОЖНЫХ СИСТЕМ Страницы: 95-100 DOI: 10.336 9 3/2313- 223X - 2019 - 6 - 2- 9 5- 1 Выпуск №15585
МЕТОДЫ ОЦЕНКИ РАБОЧЕГО МЕСТА ЭКИПАЖА В ПРОЦЕССЕ ПРОЕКТИРОВАНИЯ КАБИНЫ ПЕРСПЕКТИВНОГО АВИАЦИОННОГО КОМПЛЕКСА
компоновка кабины экипажа информационно-управляющее поле стенд поисковых исследований аппаратно-программный комплекс эргономические показатели
Подробнее
6. ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ Страницы: 107-113 Выпуск №9675
КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СДВИГОВОГО РАЗРУШЕНИЯ В ТИТАНЕ КАК НАЧАЛЬНОЙ СТАДИИ ПРОЦЕССА ТРЕНИЯ ОДНОРОДНЫХ ПОВЕРХНОСТЕЙ
моделирование теория функционала плотности метод псевдопотенциала сдвиговое разрушение титан
Подробнее
МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИЯ МАТЕРИАЛОВ Страницы: 146-150 Выпуск №11955
МЕХАНИЧЕСКИЕ СВОЙСТВАНАНОРАЗМЕРНЫХ ПОКРЫТИЙ НА ОСНОВЕ TI, TIN И ZRN
модуль Юнга модуль сдвига моделирование растяжение поверхности трещины
Подробнее
Системный анализ, управление и обработка информации Страницы: 9-18 DOI: 10.33693/2313-223X-2021-8-4-9-18 Выпуск №20323
Анализ перспектив применения технологии интернета вещей в электроэнергетической отрасли
интернет вещей предсказательное техническое обслуживание экономическая эффективность окупаемость моделирование
Подробнее